Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Cálculo del tiempo térmico para 13 códigos de la escala BBCH de 12 progenies de quinua en las condiciones de crecimiento de la Sabana Brasileña

Quinoa plant in the Brazilian savanna  Photo: W. Anchico-Jojoa

Resumen

La introducción de la quinua (Chenopodium quinoa Willd.) en la Sabana Brasileña ha tenido éxito basada en la selección de progenies de los tipos de valle. Dada la amplia variación de ambientes, una alternativa para definir el ciclo de madurez de la planta ha sido el uso del tiempo térmico acumulado (TTA). Esta medida permite la predicción del ciclo de la planta y proporciona apoyo para definir la duración de la fenología, siendo útil en el manejo y mejoramiento de los cultivos. Este estudio tuvo como objetivo calcular las unidades térmicas para 13 códigos de la escala BBCH de la quinua, mediante la evaluación de 12 progenies seleccionadas y cultivadas en dos fechas de siembra, a 15° 56' S y 47° 55' O, altitud de 1.100 m, Brasilia, DF, Brasil. Las diferencias estadísticas fueron predominantes desde el inicio de las fases reproductivas BBCH-50, clasificando las progenies como precoces, de ciclo medio y tardías. Las progenies de madurez temprana y sus respectivas TTA para BBCH-89 son BRQ4 (1.676,8), BRQ1 (1.685) y AUR (1.691), contrastando con las tardías BLA (2.239), BRQ3 (1.929,1 GDD) y BRQ8 (1.895). Las unidades térmicas acumuladas para BBCH-89 oscilaron entre 1.565,25 y 2.381, con una diferencia entre los genotipos más precoces y los más tardíos de 815,75. Las progenies seleccionadas de los cultivares existentes son diferentes en cuanto a la acumulación de unidades térmicas, lo que implica la eficiencia en la adquisición de cultivares para escalonar el cultivo de quinua. Las unidades térmicas acumuladas explican el rango de ciclos de maduración de las plantas en la selección. Además, el cálculo del TTA para los códigos de la escala BBCH es una herramienta eficaz para predecir el ciclo fenológico de la quinua.

Palabras clave

Chenopodium quinoa Willd., Fenología, Selección, Manejo del cultivo, Grados día

PDF (English)

Citas

  1. Anandhi, A. 2016. Growing degree days - Ecosystem indicator for changing diurnal temperatures and their impact on corn growth stages in Kansas. Ecol. Indic. 61, 149-158. Doi: 10.1016/j.ecolind.2015.08.023
  2. Anchico, W., C.R. Spehar, and M.S. Vilela. 2020. Adaptability of quinoa genotypes to altitudes and population densities in Colombia. Biosci. J. 36, 14-21. Doi: 10.14393/BJ-v36n0a2020-48243
  3. Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Amer. Soc. Hort. Sci. 74(1), 430-445.
  4. Asseng, S., I. Foster, and N.C. Turner. 2011. The impact of temperature variability on wheat yields. Global Change Biol. 17(2), 997-1012. Doi: 10.1111/j.1365-2486.2010.02262.x
  5. Bertero, H.D., R.W. King, and A.J. Hall. 1999. Modelling photoperiod and temperature responses of flowering in quinoa (Chenopodium quinoa Willd.). Field Crops Res. 63(1), 19-34. Doi: 10.1016/S0378-4290(99)00024-6
  6. Bertero, H.D., A.J. De la Vega, G. Correa, S.E. Jacobsen, and A. Mujica. 2004. Genotype and genotype-by-environment interaction effects for grain yield and grain size of quinoa (Chenopodium quinoa Willd.) as revealed by pattern analysis of international multi-environment trials. Field Crops Res. 89(2-3), 299-318. Doi: 10.1016/j.fcr.2004.02.006
  7. Bois, J.F., T. Winkel, J.P. Lhomme, J.P. Raffaillac, and A. Rocheteau. 2006. Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: Effects on germination, phenology, growth and freezing. Eur. J. Agron. 25(4), 299-308. Doi: 10.1016/j.eja.2006.06.007
  8. Garcia-Parra, M., D.F. Roa, R. Stechauner, F. García-Molano, D. Bazile, and N.Z. Leguizamon Plazas. 2020b. Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): A review on a global scale. Sylwan 164, 411-433.
  9. Garcia-Parra, M., A. Zurita-Silva, R. Stechauner-Rohringer, D. Roa-Acosta, and S. Jacobsen. 2020a. Quinoa (Chenopodium quinoa willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil. J. Agric. Res. 80(2), 290-302. Doi: 10.4067/S0718-58392020000200290
  10. González, J.A., S.E. Buedo, M. Bruno, and F.E. Prado. 2017. Quantifying cardinal temperatures in quinoa (Chenopodium quinoa) cultivars. Lilloa 54(2), 179-194. Doi: 10.30550/j.lil/2017.54.2/8
  11. Hair, J.F., R.E. Anderson, R.L. Tatham, and W. Black. 2005. Análise multivariada de dados. Bookman Editora, Porto Alegre, Brazil.
  12. Jojoa, W.A., J.R. Peixoto, C.R. Spehar, M.S. Vilela, M. Fagioli, D. Nobrega, J. Cruz, and A. Oliveira. 2021. Evaluation of the physiological quality of quinoa seeds. Afr. J. Agric. Res. 17(5), 802-808. Doi: 10.5897/AJAR2020.15099
  13. Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259-263.
  14. Maughan, P.J., A. Bonifacio, E.N. Jellen, M.R. Stevens, C.E. Coleman, M. Ricks, S.L. Mason, D.E. Jarvis, B.W. Gardunia, and D.J. Fairbanks. 2004. A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor. Appl. Genet. 109(6), 1188-1195. Doi: 10.1007/s00122-004-1730-9
  15. McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 87(4), 291-300. Doi: 10.1016/S0168-1923(97)00027-0
  16. Montes-Rojas, C., G.A. Burbano-Catuche, E.F. Muñoz-Certuche, and Y. Calderón-Yonda. 2018. Descripción del ciclo fenológico de cuatro ecotipos de (Chenopodium quinua Willd.), en Purace - Cauca, Colombia. Rev. Bio. Agro. 16(2), 26-37. Doi: 10.18684/bsaa.v16n2.1163
  17. Parra-Coronado, A., G. Fischer, and B. Chaves-Cordoba. 2015. Tiempo térmico para estados fenológicos reproductivos de la feijoa (Acca sellowiana (O. Berg) Burret). Acta Biol. Colomb. 20(1), 163-173. Doi: 10.15446/abc.v20n1.43390
  18. Perez-Rea, D. and R. Antezana-Gomez. 2018. The functionality of pseudocereal starches. pp. 509-542. In: Starch in food: Structure, function and applications. 2nd ed. Woodhead Publishing. Doi: 10.1016/B978-0-08-100868-3.00012-3
  19. Reguera, M., C.M. Conesa, A. Gil-Gómez, C.M. Haros, M.Á. Pérez-Casas, V. Briones-Labarca, L. Bolaños, I. Bonilla, R. Álvarez, K. Pinto, Á. Mujica, and L. Bascuñán-Godoy. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 6, e4442. Doi: https://doi.org/10.7717/peerj.4442
  20. Renato, N.S., J.B.L. Silva, G.C. Sediyama, and E.G. Pereira. 2013. Influência dos métodos para cálculo de graus-dia em condições de aumento de temperatura para as culturas de milho e feijão. Rev. Bras. Meteorol. 28(4), 382-388. Doi: 10.1590/S0102-77862013000400004
  21. Salazar-Gutierrez, M.R., J. Johnson, B. Chaves-Cordoba, and G. Hoogenboom. 2013. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod., 7(4), 741-762.
  22. Sharma, A., R. Deepa, S. Sankar, M. Pryor, B. Stewart, E. Johnson, and A. Anandhi. 2021. Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida. Ecol. Indic. 124, 107383. Doi: 10.1016/j.ecolind.2021.107383
  23. Sosa‐Zuniga, V., V. Brito, F. Fuentes, and U. Steinfort. 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 171(1), 117-124. Doi: 10.1111/aab.12358
  24. Spehar, C.R., E.R. Francisco, and E.A. Pereira. 2015a. Yield stability of soybean cultivars in response to sowing date in the lower latitude Brazilian Savannah Highlands. J. Agric. Sci. 153(6), 1059-1068. Doi: 10.1017/S0021859614000781
  25. Spehar, C.R., J.E.D.S. Rocha, and R.L.D.B. Santos. 2011. Desempenho agronômico e recomendaciones para cultivo de quinua (BRS Syetetuba) no cerrado. Pesqui. Agropecu. Trop. 41, 145-147. Doi: 10.5216/pat.v41i1.9395
  26. Spehar, C.R., J.E.S. Rocha, W.Q. Ribeiro, R.L.B. Santos, J.L.R. Ascheri, and F.F.J. Souza. 2015b. Advances and challenges for quinoa production and utilization in Brazilo. pp. 562-582. In: State of the art report on quinoa around the world in 2013. FAO, Rome.
  27. Sosa‐Zuniga, V., Brito, V., Fuentes, F., and Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. An. Biol. Aple. 171(1), 117-124. DOI: https://doi.org/10.1111/aab.12358
  28. Souza, A.P., A.C. Silva, M. Pizzatto, and M.E. Souza. 2017. Thermal requirements and productivity of squash (Cucurbita moschata Duch.) in the Cerrado-Amazon Transition. Agrociencia 21(2), 15-22.
  29. Stanschewski, C.S., F.G. Rey, G. Wellman, V.J. Melino, D.S.R. Patiranage, K.S.S.M. Johansen, D. Bertero, H. Oakey, C. Colque-Little, I. Afzal, S. Raubach, N. Miller, J. Streich, D. Amby, E. Buchvaldt, W. Nazgol, M. Mark, A.A. Magdi D. Wu, D. Jacobson, C. Andreasen, C. Jung, K. Murphy, D. Bazile, and M. Tester. 2021. Quinoa phenotyping methodologies: An international consensus. Plants 10(09), 1759 Doi: 10.3390/plants10091759
  30. Ward Jr., J.H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236-244.
  31. Zapata, D., M. Salazar, B. Chaves, M. Keller, and G. Hoogenboom. 2015. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars. I. J. Biometeorol. 59(12), 1771-1781. Doi: 10.1007/s00484-015-0985-y

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.