Physicochemical characterization and antioxidant capacity of quinoa progenies from Colombia, Brazil and Ecuador produced in the Brazilian Savanna

Authors

  • Wilson Anchico-Jojoa Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Pós-graduação em Agronomia, CEP 70.910-900 Brasília, DF, Brasil. https://orcid.org/0000-0002-1993-1644
  • José Ricardo Peixoto Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Brasília https://orcid.org/0000-0002-8885-2886
  • Antônio Alves De Oliveira Júnior Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Brasília https://orcid.org/0000-0002-2605-3704

DOI:

https://doi.org/10.17584/rcch.2023v17i1.15696

Keywords:

Protein, Carbohydrates, Ash, Lipids, Chenopodium quinoa Willd.

Abstract

In agroindustry, quinoa is considered a functional food due to its health benefits. However, it is necessary to identify genotypes that have better physicochemical characteristics and high antioxidant capacity for selection in breeding programs. This study aimed to evaluate the physicochemical composition and antioxidant capacity of quinoa genotypes originating from Brazil, Colombia, and Ecuador grown in the Brazilian Savanna (Cerrado) environment. The sowing was carried out at Fazenda Água Limpa, Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, located at 15º56' S and 47º55' W, at an altitude of 1,100m. The physicochemical analysis was performed in 2021 at the Centro de Pesquisa em Alimentação of the Universidade Passo Fundo, Rio Grande do Sul, and the antioxidant capacity analysis was carried out at the Universidad de Santiago de Chile. The moisture, ash, protein, carbohydrates (CHO), crude fiber, lipid, and antioxidant capacity were determined. The original data was submitted to analysis of variance, by the F test (P≤0.05), and the means compared by the Tukey test. Linear correlations (Fischer) (P≤0.01) and (P≤0.05) and hierarchical clustering analysis by the Ward method were performed. The genotypes showed variability in physicochemical characteristics and antioxidant activity. CHO was the major compound present in the seeds, exhibiting an average of 50.16%, the protein average was 15.27%, with the P88 genotype standing out with 16.28%. The lipids, fiber, and ash average content were 3.24, 14.13, 6.0%, respectively. CHO showed a positive correlation with the lipid parameter (r=0.858) and a significant negative correlation with protein (r=-0.785). The Aurora cultivar expressed the highest antioxidant activity (1.96±0.01 mg Trolox/g). 

Downloads

Download data is not yet available.

References

Ahmed, J., L. Thomas, Y.A. Arfat, and A. Joseph. 2018. Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydr. Polym. 197, 649-657. Doi: https://doi.org/10.1016/j.carbpol.2018.05.081

Alencar, E.R., W.J. Anchico, K.N. Silva, and N.O.S. Souza. 2021. Ozonation of quinoa seeds (Chenopodium quinoa Willd.): Saturation and decomposition kinetics of ozone and physiological quality of seeds. Sem. Ci. Agr. 42(3), 1019-1032. Doi: https://doi.org/10.5433/1679-0359.2021v42n3p1019

Alvarez, M., J. Pavón, and S. Von Rütte. 1990. Caracterización. pp. 5-30. In: Wahli, C. (ed.). Quinua: hacia su cultivo comercial. Latinreco, Quito.

Anchico, W., J.R. Peixoto, C.R. Spehar, M.S. Vilela, M. Fagioli, D. Nobrega, J. Cruz, and A. Oliveira. 2021. Evaluation of the physiological quality of quinoa seeds. Afr. J. Agric. Res. 17(5), 802-808. Doi: https://doi.org/10.5897/AJAR2020.15099

Anchico, W., C.R. Spehar, and M.S. Vilela. 2020. Adaptability of quinoa genotypes to altitudes and population densities in Colombia. Biosci. J. 36(Supl. 1), 14-21. Doi: https://doi.org/10.14393/BJ-v36n0a2020-48243

Anchico-Jojoa, W., J.R. Peixoto, C.R. Spehar, and M.S. Vilela. 2021. Calculation of the thermal units for 13 codes of the BBCH scale of 12 progenies of quinoa in the growing conditions of the Brazilian savanna. Rev. Colomb. Cienc. Hortic. 15(3), e13109. Doi: https://doi.org/10.17584/RCCH.2021V15I3.13109

AOAC, Association of Official Agricultural Chemists. 1995. Official methods of analysis. 16th ed. AOAC International, Washington, DC.

Asher, A., S. Galili, T. Whitney, and L. Rubinovich. 2020. The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Sci. Hortic. 272, 109534. Doi: https://doi.org/10.1016/J.SCIENTA.2020.109534

Bakhtavar, A.M. and I. Afzal. 2020. Climate smart dry chain technology for safe storage of quinoa seeds. Sci. Rep. 10, 12554. Doi: https://doi.org/10.1038/s41598-020-69190-w

Bhargava, A., S. Shukla, and D. Ohri. 2006. Chenopodium quinoa - An indian perspective. Ind. Crops Prod. 23(1), 73-87. Doi: https://doi.org/10.1016/J.INDCROP.2005.04.002

Bonifacio, A., L. Gomez-Pando, and W. Rojas. 2015. Quinoa breeding and modern variety development. pp. 172-191. In: Bazile, D., H.D. Bertero, and C. Nieto (eds.). State of the art report on quinoa around the world in 2013. FAO; CIRAD, Rome.

Contreras-Jiménez, B., O.L. Torres-Vargas, and M.E. Rodríguez-García. 2019. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch. Food Chem. 298, 124982. Doi: https://doi.org/10.1016/J.FOODCHEM.2019.124982

Dakhili, S., L. Abdolalizadeh, S.M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2019. Quinoa protein: Composition, structure and functional properties. Food Chem. 299, 125161. Doi: https://doi.org/10.1016/J.FOODCHEM.2019.125161

Elsohaimy, S.A., T.M. Refaay, and M.A.M. Zaytoun. 2015. Physicochemical and functional properties of quinoa protein isolate. Ann. Agric. Sci. 60(2), 297-305. Doi: https://doi.org/10.1016/J.AOAS.2015.10.007

Escribano, J., J. Cabanes, M. Jiménez-Atiénzar, M. Ibañez-Tremolada, L.R. Gómez-Pando, F. García-Carmona, and F. Gandía-Herrero. 2017. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 234, 285-294. Doi: https://doi.org/10.1016/j.foodchem.2017.04.187

Fischer, S., R. Wilckens, J. Jara, M. Aranda, W. Valdivia, L. Bustamante, F. Graf, and I. Obal. 2017. Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Ind. Crops Prod. 107, 558-64. Doi: https://doi.org/10.1016/J.INDCROP.2017.04.035

Freddi, O.S., A.S. Ferraudo, and J.F. Centurion. 2008. Análise multivariada na comparação de um latossolo vermelho cultivado com milho. Rev. Bras. Ciênc. Solo 32(3), 953-961. Doi: https://doi.org/10.1590/S0100-06832008000300005

Hafeez, H.M., S. Iqbal, Y. Li, M.S. Saddiq, S.M.A. Basra, H. Zhang, N. Zahra, M.Z. Akram, D. Bertero, and R.N. Curti. 2022. Assessment of phenotypic diversity in the USDA collection of quinoa links genotypic adaptation to germplasm origin. Plants 11(6), 738. Doi: https://doi.org/10.3390/PLANTS11060738

Kibar, H., F. Sönmez, and S. Temel. 2021. Effect of storage conditions on nutritional quality and color characteristics of quinoa varieties. J. Stored Prod. Res. 91, 101761. Doi: https://doi.org/10.1016/J.JSPR.2020.101761

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15(3), 259-263. Doi: https://doi.org/10.1127/0941-2948/2006/0130

Kuskoski, E.M., A.G. Asuero, M.C. Garcia-Parilla, A.M. Troncoso, and R. Fett. 2004. Atividad antioxidante de pigmentos antocianicos. Food Sci. Technol. 24(4), 691-693. Doi: https://doi.org/10.1590/S0101-20612004000400036

Liu, Y., J. Liu, Z. Kong, X. Huan, L. Li, P. Zhang, Q. Wang, Y. Guo, W. Zhu, and P. Qin. 2022. Transcriptomics and metabolomics analyses of the mechanism of flavonoid synthesis in seeds of differently colored quinoa strains. Genomics 114(1), 138-48. Doi: https://doi.org/10.1016/J.YGENO.2021.11.030

Miranda, M., A. Vega-Gálvez, J. López, G. Parada, M. Sanders, M. Aranda, E. Uribe, and K. Di Scala. 2010. Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Ind. Crops Prod. 32(3), 258-263. Doi: https://doi.org/10.1016/j.indcrop.2010.04.019

Mohamed, M.A., M.H. Mubarak, and S.A. Okasha. 2019. Effect of saline irrigation on agro-physiological and biochemical of some quinoa cultivars under field conditions. J. Agron. Res. 1(4), 1-9. Doi: https://doi.org/10.14302/ISSN.2639-3166.JAR-19-2237

Mujica-Sánchez, A. 2001. Quinua (Chenopodium quinoa Willd.): ancestral cultivo andino, Alimento del presente y del futuro. FAO, Santiago.

Nasir, M.A., I. Pasha, M.S. Butt, and H. Nawaz. 2015. Biochemical characterization of quinoa with special reference to its protein quality. Pak. J. Agric. Res. 52(3), 731-737.

Nieto, C., C. Vimos, C. Monteros, C. Caicedo, and M. Rivera. 1992. INIAP-Ingapirca e INIAP-Tunkahuan: dos variedades de quinua de bajo contenido de saponina. Bull. 228. Instituto Nacional de Investigaciones Agropecuarias, Quito.

Ninfali, P., A. Panato, F. Bortolotti, L. Valentini, and P. Gobbi. 2020. Morphological analysis of the seeds of three pseudocereals by using light microscopy and ESEM-EDS. Eur. J. Histochem. 64(1). Doi: https://doi.org/10.4081/EJH.2020.3075

Nisar, M., D.R. More, S. Zubair, and S.I. Hashmi. 2017. Physico-chemical and nutritional properties of quinoa seed: A review. J. Pharmacogn. Phytochem. 6(5), 2067-2069.

Nowak, V., J. Du, and R. Charrondière. 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chem. 193, 47-54. Doi: https://doi.org/10.1016/J.FOODCHEM.2015.02.111

Pereira, E., C. Encina-Zelada, L. Barros, U. Gonzales-Barron, V. Cadavez, and I. Ferreira. 2019. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 280, 110-114. Doi: https://doi.org/10.1016/j.foodchem.2018.12.068

Polari, I.L.B. 2017. Avaliação do potencial nutricional e antioxidante de variedades de quinoa (Chenopodium quinoa Willd.). PhD thesis. Centro de Tecnologia, Universidade Federal Da Paraíba, Joâo Pessoa, Brazil.

Repo-Carrasco-Valencia, R.A.-M. and L.A. Serna. 2011. Quinoa (Chenopodium quinoa Willd.) as a source of dietary fiber and other functional components. Food Sci. Technol. 31(1), 225-230. Doi: https://doi.org/10.1590/S0101-20612011000100035

Resende, M.D.V. and J.B. Duarte. 2007. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesq. Agropec. Trop. 37(3), 182-94.

Rocha, J.E.S. 2011. Controle genético de caracteres agronômicos em quinoa (Chenopodium quinoa Willd). PhD thesis. Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasilia.

Rodríguez, J.M., J. Matías, V. Cruz, and P. Calvo. 2021. Nutritional characterization of six quinoa (Chenopodium quinoa Willd.) varieties cultivated in Southern Europe. J. Food Compost. Anal. 99, 103876. Doi: https://doi.org/10.1016/J.JFCA.2021.103876

Romano, A. and P. Ferranti. 2023. Pseudocereals: Quinoa (Chenopodium quinoa Willd.). Reference Module in Food Science. Doi: https://doi.org/10.1016/B978-0-12-823960-5.00004-4

Sañudo, B., G. Arteaga, C. Betancourth, J. Zambrano, and J. Burbano. 2005. Perspectivas de la quinua dulce para la región andina de Nariño. Unigraf, San Juan de Pasto, Colombia.

Satheesh, N., S.W. Fanta, and F. Yildiz. 2018. Review on structural, nutritional and anti-nutritional composition of Teff (Eragrostis tef) in comparison with quinoa (Chenopodium quinoa Willd.). Cogent Food Agric. 4(1), 1546942. Doi: https://doi.org/10.1080/23311932.2018.1546942

Sharma, S., A. Kataria, and B. Singh. 2022. Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa (Chenopodium quinoa). LWT Food Sci. Technol. 160, 113256. Doi: https://doi.org/10.1016/J.LWT.2022.113256

Sies, H. and W. Stahl. 1995. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62(6), 1315-1321. Doi: https://doi.org/10.1093/ajcn/62.6.1315S

Spehar, C.R. 2007. Quinoa: alternativa para a diversificação agrícola e alimentar. Embrapa Cerrados, Planaltina, Brazil.

Spehar, C.R., J.E.S. Rocha, and R.L.B. Santos. 2011. Desempenho agronômico e recomendações para cultivo de quinoa (BRS Syetetuba) no cerrado. Pesq. Agropec. Trop. 41(1), 145-147. Doi: https://doi.org/10.5216/pat.v41i1.9395

Song, H., Z. Zheng, J. Wu, J. Lai, Q. Chu, and X. Zheng. 2016. White pitaya (Hylocereus undatus) juice attenuates insulin resistance and hepatic steatosis in diet-induced obese mice. PLoS One 11(2), e0149670. Doi: https://doi.org/10.1371/journal.pone.0149670

Souza, F.F.J., I.A. Devilla, R.T.G. Souza, I.R. Teixeira, and C.R. Spehar. 2016. Physiological quality of quinoa seeds submitted to different storage conditions. Afr. J. Agric. Res. 11(15), 1299-1308. Doi: https://doi.org/10.5897/AJAR2016-10870

Stikic, R., D. Glamoclija, M. Demin, B. Vucelic-Radovic, Z. Jovanovic, D. Milojkovic-Opsenica, S.E. Jacobsen, and M. Milovanovic. 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. J. Cereal Sci. 55(2), 132-138. Doi: https://doi.org/10.1016/J.JCS.2011.10.010

Stoleru, V., S.-E. Jacobsen, M. Vitanescu, G. Jitareanu, M. Butnariu, N. Munteanu, T. Stan, G.C. Teliban, A. Cojocaru, and G. Mihalache. 2022. Nutritional and antinutritional compounds in leaves of quinoa. Food Biosci. 45, 101494. Doi: https://doi.org/10.1016/J.FBIO.2021.101494

USDA, United States Department of Agriculture. 2015. USDA National Nutrient Database for Standard Reference. In: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release; consulted: November, 2022.

Valencia-Chamorro, S.A. 2016. Quinoa: Overview. pp. 341-348. In: Encyclopedia of food grains. 2nd ed. Vol. 1. Elsevier. Doi: https://doi.org/10.1016/B978-0-12-394437-5.00041-3

Velásquez-Barreto, F.F., H.A. Miñano, J. Alvarez-Ramirez, and L.A. Bello-Pérez. 2021. Structural, functional, and chemical properties of small starch granules: Andean quinoa and kiwicha. Food Hydrocoll. 120, 106883. Doi: https://doi.org/10.1016/J.FOODHYD.2021.106883

Vilcacundo, R. and B. Hernández-Ledesma. 2017. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 14, 1-6. Doi: https://doi.org/10.1016/J.COFS.2016.11.007

Zhang, L., T. Xiong, X.-Fen Wang, D.-L. Chen, X.-D. He, C. Zhang, C. Wu, Q. Li, X. Ding, and J.-Y. Qian. 2021. Pickering emulsifiers based on enzymatically modified quinoa starches: Preparation, microstructures, hydrophilic property and emulsifying property. International J. Biol. Macromol. 190, 130-40. Doi: https://doi.org/10.1016/J.IJBIOMAC.2021.08.212

Quinoa plant. Photo: W. Anchico-Jojoa

Downloads

Published

2023-01-01

How to Cite

Anchico-Jojoa, W., Peixoto, J. R., & Oliveira Júnior, A. A. D. (2023). Physicochemical characterization and antioxidant capacity of quinoa progenies from Colombia, Brazil and Ecuador produced in the Brazilian Savanna. Revista Colombiana De Ciencias Hortícolas, 17(1), e15696. https://doi.org/10.17584/rcch.2023v17i1.15696

Issue

Section

Other species section