Efecto de la sustitución parcial de la harina de trigo con harinas de tres hojas verdes en las propiedades nutricionales y antioxidantes del pan de molde

Resumen
Las hojas de ciertas plantas cultivadas pueden presentar un alto contenido de compuestos fenólicos, demostrando una actividad antioxidante significativa. Los fenoles, compuestos orgánicos presentes en muchas plantas, poseen propiedades antioxidantes que pueden proteger las células del cuerpo del daño oxidativo causado por los radicales libres. En este estudio, se elaboraron cuatro tipos diferentes de pan: pan estándar, pan con espinaca, pan con perejil y pan con estragón, utilizando una sustitución parcial (SP) del 3% de la harina de trigo con harinas derivadas de diferentes tipos de hojas. Se evaluaron las propiedades fisicoquímicas, antioxidantes y sensoriales del pan con esta adición del 3% de harina de hojas. Los resultados revelaron que la inclusión del 3% de harina de hojas aumentó el contenido de proteína, fibra y cenizas, mientras que redujo el contenido de grasa. Además, se observó una disminución en la luminosidad de la miga y un cambio en la coordenada de color a*. El contenido total de fenoles (TPC) y la actividad antioxidante (AA) también aumentaron con la adición de estos ingredientes naturales, pasando de 51.1 a 101.38 mg GAE/100g y de 15.48 a 50.48 mg AAE/100g, respectivamente. En términos de evaluación sensorial, el pan con un 3% de harina de espinaca fue el más aceptado después del pan estándar. En resumen, la inclusión del 3% de harina de hojas en el pan influyó en sus propiedades, destacándose el estragón por su mayor incremento en fibra, contenido de cenizas, actividad antioxidante y contenido total de fenoles.
Palabras clave
Antioxidantes, Perejil, Polifenoles, Espinaca, Estragón
Citas
- AOAC, Association Official Analytical Chemists. 2010. Official methods of analysis of AOAC international. 18th ed. Gaithersburg, MD.
- Arrascue, B. and L. Troncoso. 2023. The gastric regenerative effect of consumption of Petroselinum sativum L. (parsley) in rats with gastritis induced by ethanol. Rev. Gastroenterol. Peru 43(2), 127-133. Doi: http://doi.org/10.47892/rgp.2023.432.1497
- Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28(1), 25-30. Doi: https://doi.org/10.1016/S0023-6438(95)80008-5
- Das, L., U. Raychaudhuri, and R. Chakraborty. 2012. Supplementation of common white bread by coriander leaf powder. Food Sci. Biotechnol. 21(2), 425-433. Doi: https://doi.org/10.1007/s10068-012-0054-9
- Dimov, I., N. Petkova, G. Nakov, I. Taneva, I. Ivanov, and V. Stamatovska. 2018. Improvement of antioxidant potential of wheat flours and breads by addition of medicinal plants. Ukr. Food J. 7, 671-681. Doi: https://doi.org/10.24263/2304-974X-2018-7-4-11
- Đurović, S., M. Vujanović, M. Radojković, J. Filipović, V. Filipović, U. Gašić, Ž. Tešić, P. Mašković, and Z. Zeković. 2020. The functional food production: application of stinging nettle leaves and its extracts in the baking of a bread. Food Chem. 312, 126091. Doi: https://doi.org/10.1016/j.foodchem.2019.126091
- Dziki, D., G. Cacak-Pietrzak, U. Gawlik-Dziki, A. Sułek, S. Kocira, and B. Biernacka. 2019. Effect of moldavian dragonhead (Dracocephalum moldavica L.) leaves on the baking properties of wheat flour and quality of bread. CyTA-J. Food 17(1), 536-543. Doi: https://doi.org/10.1080/19476337.2019.1609587
- Dziki, D., W.H. Hassoon, B. Biernacka, and U. Gawlik-Dziki. 2022. Dried and powdered leaves of Parsley as a functional additive to wheat bread. Appl. Sci. 12(15), 7930. Doi: https://doi.org/10.3390/app12157930
- El-Sayed, S.M. 2020. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon 6(1), e03278. Doi: https://doi.org/10.1016/j.heliyon.2020.e03278
- Farzaei, M.H., Z. Abbasabadi, M.R.S. Ardekani, R. Rahimi, and F. Farzaei. 2013. Parsley: a review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med. 33(6), 815-826. Doi: https://doi.org/10.1016/S0254-6272(14)60018-2
- Filip, S. and R. Vidrih. 2015. Amino acid composition of protein-enriched dried pasta: is it suitable for a low-carbohydrate diet? Food Technol. Biotechnol. 53(3), 298-306. Doi: https://doi.org/10.17113/ftb.53.03.15.4022
- Galla, N.R., P.R. Pamidighantam, B. Karakala, M.R. Gurusiddaiah, and S. Akula. 2017. Nutritional, textural and sensory quality of biscuits supplemented with spinach (Spinacia oleracea L.). Int. J. Gastron. Food Sci. 7, 20-26. Doi: https://doi.org/10.1016/j.ijgfs.2016.12.003
- Gutierrez, R.M.P. and E.G. Velazquez. 2020. Glucopyranoside flavonoids isolated from leaves of Spinacia oleracea (spinach) inhibit the formation of advanced glycation end products (AGEs) and aldose reductase activity (RLAR). Biomed. Pharmacother. 128, 110299. Doi: https://doi.org/10.1016/j.biopha.2020.110299
- Howard, L.R., N. Pandjaitan, T. Morelock, and M.I. Gil. 2002. Antioxidant capacity and phenolic content of spinach as affected by genetics and growing season. J. Agric. Food Chem. 50(21), 5891-5896. Doi: https://doi.org/10.1021/jf020507o
- Jing, Y., X. Li, X. Hu, Z. Ma, L. Liu, and X. Ma. 2019. Effect of buckwheat extracts on acrylamide formation and the quality of bread. J. Sci. Food Agric. 99(14), 6482-6489. Doi: https://doi.org/10.1002/jsfa.9927
- Jridi, M., O. Abdelhedi, H. Kchaou, L. Msaddak, M. Nasri, N. Zouari, and N. Fakhfakh. 2019. Vine (Vitis vinifera L.) leaves as a functional ingredient in pistachio calisson formulations. Food Biosci. 31, 100436. Doi: https://doi.org/10.1016/j.fbio.2019.100436
- Junejo, S.A., A. Rashid, L. Yang, Y. Xu, S. Kraithong, and Y. Zhou. 2021. Effects of spinach powder on the physicochemical and antioxidant properties of durum wheat bread. LWT - Food Sci. Technol. 150, 112058. Doi: https://doi.org/10.1016/j.lwt.2021.112058
- Lim, P.Y., Y.Y. Sim, and K.L. Nyam. 2020. Influence of kenaf (Hibiscus cannabinus L.) leaves powder on the physico-chemical, antioxidant and sensorial properties of wheat bread. J. Food Meas. Charact. 14(5), 2425-2432. Doi: https://doi.org/10.1007/s11694-020-00489-y
- Massa, D., L. Incrocci, L. Botrini, G. Carmassi, C. Diara, P. lli De Paoli, and A. Pardossi. 2018. Modelling plant yield and quality response of fresh-market spinach (Spinacia oleracea L.) to mineral nitrogen availability in the root zone. Ital. J. Agron. 13(3), 1120. Doi: https://doi.org/10.4081/ija.2018.1120
- Mpofu, A., H.D. Sapirstein, and T. Beta. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 54(4), 1265-1270. Doi: https://doi.org/10.1021/jf052683d
- Mumivand, H., M. Babalar, L. Tabrizi, L.E. Craker, M. Shokrpour, and J. Hadian. 2017. Antioxidant properties and principal phenolic phytochemicals of Iranian tarragon (Artemisia dracunculus L.) accessions. Hortic. Environ. Biotechnol. 58(4), 414-422. Doi: https://doi.org/10.1007/s13580-017-0121-5
- Nesslany, F., D. Parent-Massin, and D. Marzin. 2010. Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro. Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 696(1), 1-9. Doi: https://doi.org/10.1016/j.mrgentox.2009.11.003
- Pripdeevech, P. and S. Wongpornchai. 2012. Tarragon. pp. 504-511. In: Peter, K.V. (ed.). Handbook of herbs and spices. 2nd ed. Vol. 2. Elsevier, Abington Hall, UK. https://doi.org/10.1533/9780857095688.504
- Saavedra, G. and E. Maldonado. 2021. Influencia de factores ambientales, agronómicos, genéticos y fisiológicos en el contenido de carotenoides en frutas y hortalizas. Rev. Cienc. Tecnol. 1(13),87-96.
- Sany, H., H.A.H. Said-Al Ahl, and T. Astatkie. 2022. Essential oil content, yield, and components from the herb, leaf, and stem of curly-leafed parsley at three harvest days. J. Cent. Eur. Agric. 23(1), 54-61. Doi: https://doi.org/10.5513/JCEA01/23.1.3293
- Sgarbieri, V. 1998. Propiedades funcionais de proteínas em alimentos. Bol. SBCTA 32, 105-126.
- Singleton, V.L. and J.A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144-158. Doi: https://doi.org/10.5344/ajev.1965.16.3.144
- Skendi, A., M. Irakli, P. Chatzopoulou, and M. Papageorgiou. 2019. Aromatic plants of Lamiaceae family in a traditional bread recipe: Effects on quality and phytochemical content. J. Food Biochem. 43(11), e13020. Doi: https://doi.org/10.1111/jfbc.13020
- Skotnicka, M., F. Kłobukowski, and M. Śmiechowska. 2017. Prospects for development of highly satiating foods in Poland. Zeszyty Naukowe SGGW w Warszawie - Problemy Rolnictwa Światowego 17(4), 280-291. Doi: https://doi.org/10.22630/prs.2017.17.4.104
- Tajner-Czopek, A., M. Gertchen, E. Rytel, A. Kita, A.Z. Kucharska, and A. Sokół-Łętowska. 2020. Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants 9(5), 412. Doi: https://doi.org/10.3390/antiox9050412
- Velez, Z., M.A. Campinho, Â.R. Guerra, L. García, P. Ramos, O. Guerreiro, L. Felício, F. Schmitt, and M. Duarte. 2012. Biological characterization of Cynara cardunculus L. Methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture 2(4), 472-492. Doi: https://doi.org/10.3390/agriculture2040472
- Waseem, M., S. Akhtar, M.F. Manzoor, A.A. Mirani, Z. Ali, T. Ismail, N. Ahmad, and E. Karrar. 2021. Nutritional characterization and food value addition properties of dehydrated spinach powder. Food Sci. Nutr. 9(2), 1213-1221. Doi: https://doi.org/10.1002/fsn3.2110
- Zhu, F., Y.Z. Cai, M. Sun, and H. Corke. 2008. Influence of Amaranthus betacyanin pigments on the physical properties and color of wheat flours. J. Agric. Food Chem. 56(17), 8212-8217. Doi: https://doi.org/10.1021/jf801579c