Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy

Authors

DOI:

https://doi.org/10.19053/01211129.v29.n54.2020.11616

Keywords:

abrasive wear, aging, copper-beryllium alloy, T6

Abstract

Cu-Be alloys are considered high strength alloys when containing 0.2% to 2% of Be per weight, 0.2% to 2.7% of Co per weight, and up to 2.2% of Ni per weight, since they can present an elastic limit higher than 1380 MPa after aging (precipitation hardening), while, without heat treatment, they present an elastic limit between 205 MPa and 690 MPa [1]. Therefore, the complexity of the microstructure is a determining factor in the mechanical behavior of this type of alloys. In this work we analyzed the effect of microstructural variations obtained by cooling with water and with air from three different solubilization temperatures (750 °C, 800 °C and 850 °C) during 1 h, with and without aging, on the abrasive wear behavior of the Cu-1.9Be-0.25(Co+Ni) alloy. The chemical and microstructural characterization was performed by Dispersive Energy X-Ray Fluorescence (EDXRF) and Scanning Electron Microscopy (SEM-EDS), respectively. Abrasive wear behavior was evaluated under the guidelines of ASTM G65-16. Procedure E was used in this study, and the applied parameters were: force against the specimen (130 N), wheel revolutions (1000 rpm), linear abrasion (718 m) and test time (5 min). All tests were done in duplicate, showing a significant improvement in the abrasive wear behavior of the alloy, compared to the material in supply condition (T6). The lowest wear rates (<0.3 g/min) and volumetric loss (<200 mm3) were obtained with the specimens in solubilized condition with water cooling and without aging. The wear coefficients for the specimens with the highest resistance to abrasive wear are less than Ks=7x10-3.

Downloads

Download data is not yet available.

Author Biographies

Oscar Fabián Higuera-Cobos, Ph. D., Universidad del Atlántico

Roles: Conceptualization, Formal Analysis, Investigation, Methodology, Supervision, Validation, Writing – original draft, and Writing – review & editing.

Carlos Mauricio Moreno-Téllez, Ph. D., Universidad Pedagógica y Tecnológica de Colombia

Roles: Formal Analysis, Investigation, Validation, and Writing – review & editing.

Cristian Antonio Pedraza-Yepes, M.Sc., Universidad del Atlántico

Roles: Formal Analysis, Investigation, Writing – original draft, and Writing – review & editing.

References

[1] Y.Tang, Y. Kang, L. Yue, X. Jiao, “The effect of aging process on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy”, Materials & Design, vol 85, pp. 332-341. https://doi.org/10.1016/j.matdes.2015.06.157

[2] S. Hernández, J. Hardell, H. Winkelmann, M. Rodriguez Ripoll, and B. Prakash, “Influence of temperature on abrasive wear of boron steel and hot forming tool steels,” Wear, vol. 338-339, pp. 27-35, 2015. https://doi.org/10.1016/j.wear.2015.05.010

[3] J. C. Gutiérrez, L. M León, D. H Mesa, and A. Toro, “Evaluación de la resistencia al desgaste abrasivo en recubrimientos duros para aplicaciones en la industria minera,” Scientia et Technica, vol. 2, pp. 149-154, 2014

[4] O. F. Higuera-Cobos, M. Monsalve-Arias, and H. González-Romero, “Cooling kinetics effect on abrasive wear behavior of an ASTM A128 steel,” Contemporary Engineering Sciences, vol. 11 (71), pp. 3531-3537, 2018. https://doi.org/10.12988/ces.2018.87362

[5] M. Y. Ferrer-Pacheco, C. M. Moreno-Téllez, and F. Vargas-Galvis, Recubrimientos de circona y alúmina por proyección térmica con llama. Parámetros para obtener recubrimientos de alto punto de fusión. Tunja: Editorial UPTC, 2018. https://doi.org/10.19053/978-958-660-319-5

[6] I. Lomakin, M. Castillo-Rodríguez, and X. Sauvage, “Microstructure, mechanical properties and aging behavior of nanocrystalline copper–beryllium alloy," Materials Science & Engineering A, vol. 744, pp. 206-214, 2019. https://doi.org/10.1016/j.msea.2018.12.011

[7] G. Straffelini, L. Maines, M. Pellizzari, and P. Scardi, “Dry sliding wear of Cu–Be alloys,” Wear, vol. 259 (1-6), pp. 506-511, 2005. https://doi.org/10.1016/j.wear.2004.11.013

[8] X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun, "The precipitation behavior and strengthening of a Cu–2.0 wt% Be alloy”, Materials Science and Engineering A, vol. 558, pp. 326-330, 2012. https://doi.org/10.1016/j.msea.2012.08.007

[9] American Society for Testing and Materials, Standard Test Method for Knoop and Vickers Hardness of Materials, 2011

[10] American Society for Testing and Materials, Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus, 2000. https://doi.org/10.1520/g0065-04r10

[11] American Society for Testing and Materials. Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, and Scleroscope Hardness, 2007. https://doi.org/10.1520/e0140-07

[12] S. A. Hurtado-Ferrer, and L. F. Orozco-Lobo, “Efecto de los ciclos térmicos sobre el comportamiento microestructural y al desgaste abrasivo de la aleación Cobre Berilio (C17200)”, Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2017.

[13] H. Okamoto, M.E. Schlesinger and E. M. Mueller, ASM Handbook, Vol. 3, Alloy Phase Diagrams. Ohio, ASM International, 2016.

[14] H. Donthula, B. Vishwanadh, T. Alam, T. Borkar, R.J. Contieri, R. Caram, R. Banerjee, R. Tewari, G. K. Dey, and S. Banerjee, "Morphological evolution of transformation products and eutectoid transformation(s) in a hyper-eutectoid Ti-12 at% Cu alloy," Acta Materialia, vol. 168, pp. 63-75, 2019. https://doi.org/10.1016/j.actamat.2019.01.044

[15] Y. Tang, Y. Kang, L. Yue, and X Jiao, “The effect of aging process on the microstructure and mechanical properties of a Cu–Be–Co–Ni alloy” Materials & Design, vol. 85, pp. 332-341, 2017. https://doi.org/10.1Se016/j.matdes.2015.06.157

Downloads

Published

2020-08-25

How to Cite

Higuera-Cobos, O. F., Moreno-Téllez, C. M., & Pedraza-Yepes, C. A. (2020). Effect of Thermal Cycling on Abrasive Wear Response of Cu-1.9Be-0.25(Co+Ni) Alloy. Revista Facultad De Ingeniería, 29(54), e11616. https://doi.org/10.19053/01211129.v29.n54.2020.11616

Metrics

Most read articles by the same author(s)