Synthesis of an Anticorrosive Pigment by Thermal Treatment of Iron Oxides from Steel Industry Wastes

Main Article Content

Autores

María Angélica Colpas-Ruiz https://orcid.org/0000-0002-5806-2533
Camilo Gnecco-Molina https://orcid.org/0000-0001-7858-7524
Gabriel Antonio Jiménez-Rodríguez, M.Sc. https://orcid.org/0000-0002-4771-2959
José Andrés Pérez-Mendoza, M.Sc. https://orcid.org/0000-0002-3889-3495
Óscar Fabián Higuera-Cobos, Ph. D. https://orcid.org/0000-0002-4836-5215

Abstract

This work reports the obtaining of an anticorrosive pigment composed mainly of hematite (ɑ-Fe2O3) from a powder steel industry waste from rust scale of rebar steel. This residue is mainly composed of Fe2O3 (87.97 %), SiO2 (6.13 %), CaO (1.88 %), Al2O3 (1.30%) and MnO (0.77 %). The total iron oxide of the residue is constituted by the following crystalline phases: magnetite, maghemita, lepidocrocita, wüstite, goethite and hematite. The production of a pigment with a high content of hematite was possible thanks to the high content of precursor iron oxides, which were calcined at different temperatures (750-850 °C) and holding times (0.5-1.50 h). For characterizing the iron content chemically and to identify their iron oxides phases, it was used X-ray fluorescence (XRF) and X-ray diffraction (XRD). The results showed that the pigment with the highest amount of hematite (ɑ-Fe2O3) was obtained at a calcination temperature of 850 °C and a holding time of 1.00 h.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

The journal authorizes the total or partial reproduction of the published article, as long as the source, including the name of the Journal, author(s), year, volume, issue, and pages are cited.

The ideas and assertions expressed by the authors are their solely responsibility and do not represent the views and opinions of the Journal or its editors.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors  keep copyright, however, once the work in the Journal has been published, the authors must always allude to it.

The Journal allows and invites authors to publish their work in repositories or on their website after the presentation of the number in which the work is published with the aim of generating greater dissemination of the work.

References

[1] Md. S. Quddus et al., “Synthesis and Characterization of Pigment Grade Red Iron Oxide from Mill Scale,” International Research Journal of Pure and Applied Chemistry, vol. 16 (4), pp. 1-9, Aug. 2018. https://doi.org/10.9734/IRJPAC/2018/42935.

[2] R. M. Cornell, and U. Shewertmann, “Transformations,” in The Iron Oxides, 2nd ed. Weinheim, Germany: Wiley-VCH, Jul. 2003, pp. 365-409. https://doi.org/10.1002/3527602097.ch14.

[3] R. Zboril, M. Mashlan, and D. Petridis, “Iron (III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications,” Chem. Mater., vol. 14 (3), pp. 969-982, Mar. 2002. https://doi.org/10.1021/cm0111074.

[4] O. R. K. Montedo, F. M. Bertan, R. Piccoli, D. Hotza, and A. P. N. de Oliveira, “Obtenção de Pigmentos de Óxido de Ferro a partir de Resíduos Siderúrgicos,” in Proc. 48th Annu. Meeting. of the Brazilian Ceramic Society, Curitiba, Brazil, 2004. Available at: https://www.ipen.br/biblioteca/cd/cbc/2004/artigos/48cbc-4-23.pdf.

[5] J. Balbuena, L. Sánchez, and M. Yusta-Cruz, “Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars,” Materials, vol. 12 (4), pp. 1-13, Feb. 2019. https://doi.org/10.3390/ma12040621.

[6] R. Sugrañez, M. Yusta-Cruz, I. Marmol, J. Morales, and L. Sánchez, “Preparation of Sustainable Photocatalytic Materials through the Valorization of Industrial Wastes,” ChemSusChem, vol. 6 (12), pp. 2340-2347, Dec. 2013. https://doi.org/10.1002/cssc.201300449.

[7] S. Aguaiza, and O. Aldás, “Formación de hematita a partir de desechos sólidos producidos en la extracción de oro, mediante tratamientos térmicos,” Revista EPN, vol. 33 (2), 157-160, 2014.

[8] V. Della, J. A. Junkes, O. R. K. Montedo, A. P. N. Oliviera, C. R. Rambo, and D. Hotza, “Synthesis of Hematite from Steel Scrap to Produce Ceramic Pigments,” Am. Ceram. Soc. Bull., 86(5), 9101-1108, May. 2017.

[9] C. Sikalidis, T. Zorba, K. Chrissafis, and K. M. Paraskevopoulos, “Iron Oxide Pigmenting Powders Produced by Thermal Treatment of Iron Solid Wastes from Steel Mill Pickling Lines,” J. Therm. Anal. Calorim. vol. 86 (2), pp. 411-415, Nov. 2006. https://doi.org/10.1007/s10973-005-7168-8.

[10] H. Ovčačíková, “Possibilities of Recycling of Oiled Scale for Preparation of Pigments,” Acta Metall. Slovaca-Conf., vol. 14, pp. 90-97, Sep. 2014. https://doi.org/10.12776/amsc.v4i0.217.

[11] M. A. Legodi, and D. De Waal, “The Preparation of Magnetite, Goethite, Hematite and Maghemite of Pigment Quality from Mill Scale Iron Waste,” Dyes and Pigments. vol. 74 (1), pp. 161-168, Apr. 2007. https://doi.org/10.1016/j.dyepig.2006.01.038.

[12] E. Zitrou, J. Nikolaou, P. E. Tsakiridis, and G. D. Papadimitriou, “Atmospheric Corrosion of Steel Reinforcing Bars Produced by Various Manufacturing Processes,” Construction and Building Materials, vol. 21 (6), pp. 1161-1169, Jun. 2007. https://doi.org/10.1016/j.conbuildmat.2006.06.004.

[13] L. Cuesta, “Óxidos de hierro en pinturas anticorrosivas,” Inpra Latina, 19(1), pp. 26-30, Feb. 2014.

[14] H. S. A. Emira, N. A. Abdel-Khalek, and F. F. Abdel-Mohsen, “Protective Byproducts. Steelmaking Waste can be Converted to Anticorrosive Pigments,” Europ. Coatings Jnl., no. 10, pp. 40-46, Oct. 2007.

[15] E. Darezereshki, “Nano-Particles by Direct Thermal-Decomposition of Maghemita,” Materials Letters, vol. 65 (4), pp. 642-645, Feb. 2011. https://doi.org/10.1016/j.matlet.2010.11.030.

[16] K. Przepiera, and A. Przepiera, “Kinetics of Thermal Transformations of Precipitated Magnetite and Goethite,” J. Therm. Anal. Calorim., vol. 65 (2), pp. 497-503, Aug. 2001. https://doi.org/10.1023/A:1012441421955.

[17] Y. Cudennec, and A. Lecerf, “Topotactic Transformations of Goethite and Lepidocrocite into Hematite and Maghemita,” Solid State Sciences, vol. 7 (5), pp. 520-529, May. 2005. https://doi.org/10.1016/j.solidstatesciences.2005.02.002.

[18] K. Mori, T. Okada, Y. Takagi, Y. Takada, and T. Mizoguchi, “Oxidation and Disproportionation of Wüstite Studied by Mössbauer Spectroscopy,” Jpn. J. Appl. Phys., vol. 38 (2B), Feb.1999. https://doi.org/10.1143/JJAP.38.L189.

[19] A. M. Olmedo, “Estudio de películas de óxidos de hierro crecidas y depositadas en diversos ambientes,” Ph. D Disertation, Univ. Buenos Aires, Buenos Aires, Argentina, 1990. Available at: http://hdl.handle.net/20.500.12110/tesis_n2320_Olmedo.

[20] Y. M. Mos, A. C. Vermeulen, C. J. N. Buisman, and J. Weijma, “X-Ray Diffraction of Iron Containing Samples: The Importance of a Suitable Configuration,” Geomicrobiology Journal, vol. 35 (6), pp. 511-517, Jul. 2018. https://doi.org/10.1080/01490451.2017.1401183.

[21] P. Whitfield, “Laboratory X-Ray Powder Diffraction,” in U. Kolb, K. Shankland, L. Meshi, A. Avilov y W. David, Eds., Uniting Electron Crystallography and Powder Diffraction, Dordrecht, Países Bajos: Springer, 2012, pp. 53-65.

[22] A. C. Da Silva et al., “Converting Fe-rich Magnetic Wastes into Active Photocatalysts for Environmental Remediation Processes,” Journal of Photochemistry and Photobiology A Chemistry, vol. 335, pp. 259-267, Feb. 2017. https://doi.org/10.1016/j.jphotochem.2016.11.025.g.

[23] D. Jaramillo, “Desarrollo de un protocolo para la aplicación del método de Rietveld y del estándar interno en la caracterización de materiales cerámicos con contenido de amorfos,” Thesis, Univ. EAFIT, Medellín, Colombia, 2015. Available at: http://hdl.handle.net/10784/8531.

[24] M. Morcillo, and B. Chico, Eds. La corrosión atmosférica del acero al carbono en ambientes costeros, España: Editorial CSIC, 2018.

[25] J. Alcántara, D. De La Fuente, B. Chico, J. Simancas, I. Díaz, and M. Morcillo, “Marine Atmospheric Corrosion of Carbon Steel: A Review,” Materials, vol. 10 (4), pp. 1-67, Apr. 2017. https://doi.org/10.3390/ma10040406.

[26] S. Díaz, A. Forero, and O. J. Restrepo, “Hematita especular como pigmento natural en pinturas industriales,” Prospectiva, vol. 8 (1), pp. 71-76, Jun. 2010.

Downloads

Download data is not yet available.