Evaluation of the Corrosion Resistance of AISI 316l Steel Subjected to Severe Deformation Using the Groove Pressing Technique

Evaluación de la resistencia a la corrosión del acero AISI 316l sometido a deformaciones severas mediante la técnica presión calibrada

Main Article Content

Walter Yesid Aragón-Lozano
Luis Felipe Fernández-Vega
Oscar Fabián Higuera-Cobos, Ph. D.
José Luis Tristancho-Reyes, Ph. D.
Cristian Antonio Pedraza-Yepes, M.Sc.


In this investigation, samples of AISI 316L steel were subjected to severe plastic deformation by the groove pressing (GP) technique using 2 dies A2 type tool steel dies with dimensions of 96 mm X 96 mm, a corrugated die with 2 mm teeth and 45° angle and a flat die. Each pass through the GP die includes 2 states of corrugated and 2 states of straightening with a 180° rotation between each of them. This configuration provides the material with an equivalent theoretical deformation per pass of ε~1.16. The material was deformed by 4 passes per GP to an equivalent deformation of ε~4.64. Prior to the deformation, the specimens were subjected to an annealing heat treatment for 1 hour at 1000 °C with water cooling, in order to eliminate the lamination texture. The annealed and deformed material was characterized chemically and microstructurally by X-ray fluorescence and scanning electron microscopy, respectively. In order to evaluate the corrosion behavior of the material, linear polarization resistance and analysis by Tafel plot were used in a 0.6 M NaCl solution for 0 and 24 hours. The results show an atypical behavior regarding the corrosion resistance of AISI 316L steel. An increase in corrosion resistance of 45% of the material was observed after 4 passes per GP compared to annealed material (0 passes).



Download data is not yet available.

Article Details

References (SEE)

[1] L. Jinlong, L. Hongyun, L. Tongxiang, and G. Wenli, “The effects of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steels,” Materials Research Bulletin, vol. 70, pp. 896-907, 2015. https://doi.org/10.1016/j.materresbull.2015.06.030.

[2] S. Tanhaei, K. Gheisari, and S. R. Alavi Zaree, “Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel,” International Journal of Minerals, Metallurgy and Materials, vol. 25 (6), pp. 630-640, 2018. https://doi.org/10.1007/s12613-018-1610-y.

[3] H. Miyamoto, M. Yuasa, R. Muhammad, and H. Fujiwara, “Corrosion Behavior of Severely Deformed Pure and Single-Phase Materials,” Materials Transactions, vol. 60 (7), pp. 1243-1255, 2019. https://doi.org/10.2320/matertrans.mf201935.

[4] X. Wu, Y. Li, Y. Guo, Q. Ruan, and J. Lu, “Grain refinement and mechanical properties of metals processed by constrained groove pressing,” IOP Conference Series:Materials Science and Engineering, vol. 504, e 012027, 2019. https://doi.org/10.1088/1757-899x/504/1/012027.

[5] G. Faraji, H. Kim, and T. Kashi, Severe plastic deformation: methods, processing and properties, United Kingdom, Oxford: Elsevier, 2018.

[6] NKS, Aceros Inoxidables 316 y 316L. Available: https://nks.com/es/distribuidor-de-acero-inoxidable/aceros-inoxidables-316/.

[7] B. Fontalvo-Gelvez, and E. S. Jiménez-Lora “Comportamiento mecánico de un acero AISI 316L sometido a deformación plástica severa por la técnica presión calibrada,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2018

[8] INCETEMA, Potenciostat Galvanostat PG - Tekcorr 4.2 USB, Universidad Tecnológica de Pereira, 2014.

[9] American Society for Testing and Materials, G102-Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, 2015.

[10] S. Kumar, and T. Raghu, "Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique," Materials & Design, vol. 57, pp. 114-120, 2014. https://doi.org/10.1016/j.matdes.2013.12.053.

[11] G. E. Dieter, Mechanical Metallurgy, McGraww Hill Book Company, 1988.

[12] J. Avendaño, and E. Escobar, “Estudio de la resistencia a la corrosión de la aleación Ni2+XMn1-XGa en soluciones de NaCl y H2SO4 mediante técnicas electroquímicas,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2016.

[13] R. Wiston, and H. Uhlig, “Corrosion and Corrosion Control”, Passivity, Eds. New Jersy: Wiley-Interscience, 2014, pp 90-95.

[14] E. S. Jiménez-Lora, B. A. Fontalvo-Gélvez, O. F. Higuera-Cobos, I. C. Niño-Camacho, and H. A. González-Romero, “Effect generated by the calibrated pressure in the metallographic structure and mechanical properties of AISI 316L austenitic stainless steel,” Prospectiva, vol. 17 (1), 70-74, 2019. https://doi.org/10.15665/rp.v17i1.1825.

[15] American Society for Testing and Materials, G59 - Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, 2014.

Citado por:

Most read articles by the same author(s)