Finite elements analysis of the deformation applied to the 6061-T6 aluminum alloy by equal channel angular pressing

Main Article Content

Autores

Oscar Fabián Higuera-Cobos, Ph. D. http://orcid.org/0000-0002-4836-5215
Luis Carlos Flórez-García, M.Sc. http://orcid.org/0000-0002-5887-8006
Cristian Antonio Pedraza-Yepes, M.Sc. http://orcid.org/0000-0002-5951-7835

Abstract

The severe plastic deformation process Equal Channel Angular Pressing (ECAP/ECAE), was simulated under the theory of finite elements using the software ANSYS, in search of different elastoplastic responses that can be presented to a sample of 6061-T6 aluminum alloy. Variations of the mechanical parameters of the ECAP matrix, such as its geometry (external angle (Ψ) and internal angle (Φ)) and the friction conditions of the process were studied. The influence of each of these parameters on the behavior of the material was analyzed. The results obtained were compared with the theoretical predictions that have been arranged throughout the ECAE / ECAP study by different researchers.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

All articles included in the Revista Facultad de Ingeniería are published under the Creative Commons (BY) license.

Authors must complete, sign, and submit the Review and Publication Authorization Form of the manuscript provided by the Journal; this form should contain all the originality and copyright information of the manuscript.

The authors who publish in this Journal accept the following conditions:

a. The authors retain the copyright and transfer the right of the first publication to the journal, with the work registered under the Creative Commons attribution license, which allows third parties to use what is published as long as they mention the authorship of the work and the first publication in this Journal.

b. Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version of the article published in this journal (eg, include it in an institutional repository or publish it in a book) provided they clearly indicate that the work It was first published in this Journal.

c. Authors are allowed and recommended to publish their work on the Internet (for example on institutional or personal pages) before and during the process.
review and publication, as it can lead to productive exchanges and a greater and faster dissemination of published work.

d. The Journal authorizes the total or partial reproduction of the content of the publication, as long as the source is cited, that is, the name of the Journal, name of the author (s), year, volume, publication number and pages of the article.

e. The ideas and statements issued by the authors are their responsibility and in no case bind the Journal.

References

[1] H. Gleiter, “Nanocrystalline materials,” Progress Materials Science, vol. 33, pp. 223-315,1989.

[2] Y. T. Zhu, T. C. Lowe, and T. G. Langdon, “Performance and applications of nanostructured materials produced by severe plastic deformation,” Scripta Materialia, vol. 51 (8), pp. 825-830, Oct. 2004. DOI: https://doi.org/10.1016/j.scriptamat.2004.05.006.

[3] R. Z. Valiev, and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, vol. 51 (7), pp.881-981, Sep. 2006. DOI: https://doi.org/10.1016/j.pmatsci.2006.02.003.

[4] V. M. Segal, “Materials processing by simple shear,” Materials Science and Engineering A, vol. A197, pp.157-164, Jul. 1995. DOI: https://doi.org/10.1016/0921-5093(95)09705-8.

[5] R. Z. Valiev, N. A. Krasilnikov, and N. K. Tsenev, “Plastic deformation of alloys with submicron-grained structure,” Materials Science and Engineering A, vol. 137, pp. 35-40. May. 1991. DOI: https://doi.org/10.1016/0921-5093(91)90316-F.

[6] R. Z. Valiev, “Structure and mechanical properties of ultrafine-grained metals,” Materials Science and Engineering A, vol. 234-236, pp.59-66, Aug. 1997. DOI: https://doi.org/10.1016/S0921-5093(97)00183-4.

[7] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, “Ultra-fine grained bulk aluminum produced by Accumulative Roll-Bonding (ARB) process,” Scripta Materialia, vol. 39 (9), pp.1221-1227, Oct. 1998. DOI: https://doi.org/10.1016/S1359-6462(98)00302-9.

[8] Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials-development of the Accumulative Roll-Bonding (ARB) process,” Acta Materialia, vol. 47 (2), pp. 579-583, Jan. 1999. DOI: https://doi.org/10.1016/S1359-6454(98)00365-6.

[9] V. M. Segal, V. I. Reznikov, A. E. Drobyshevski, and V. I. Kopylov, “Plastic working of metals by simple shear,” Russian Metallurgy, vol. 1, pp.99-105, 1981.

[10] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon, “Principle of equal-channel angular pressing for the processing of ultra-fine grained materials,” Scripta Materialia, vol. 35 (2), pp.143-146, Jul. 1996. DOI: https://doi.org/10.1016/1359-6462(96)00107-8.

[11] ASM Handbook, Properties and selection: Nonferrous alloys and special-purpose materials. Edition Metals Handbook. ASM International Handbook Committee, 1990.

[12] J. R. Bowen, A. Gholinia, S. M. Roberts, and P. B. Prangnell, “Analysis of the billet deformation behaviour in equal channel angular extrusion,” Materials Science and Engineering A, vol. 287 (1), pp. 87–99, Jul. 2000. DOI: https://doi.org/10.1016/S0921-5093(00)00834-0.

[13] A. Krishnaiah, K. Kumaran, and U. Chakkingal, “Finite element analysis of multi-pass equal channel angular extrusion/pressing process,” Materials Science Forum, vol. 654-656, pp.1574-1577, Jun. 2010. DOI: https://doi.org/10.4028/www.scientific.net/MSF.654-656.1574.

Downloads

Download data is not yet available.

Most read articles by the same author(s)