Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de la resistencia a la corrosión del acero AISI 316l sometido a deformaciones severas mediante la técnica presión calibrada

Resumen

En esta investigación, muestras de acero AISI 316L fueron sometidas a deformación plástica severa por la técnica presión calibrada (GP) mediante el uso de 2 matrices de acero de herramientas tipo A2 con dimensiones de 96 mm X 96 mm, una matriz corrugada con dientes de 2 mm y ángulo de 45° y una matriz plana. Cada pase por la matriz GP incluye 2 estados de corrugado y 2 estados de enderezado con una rotación de 180° entre cada uno de ellos. Esta configuración provee al material una deformación teórica equivalente por pase de ε~1.16. Al material fue deformado por 4 pases por GP hasta una deformación equivalente de ε~4,64. Previo a la deformación, las probetas fueron sometidas a un tratamiento térmico de recocido durante una 1 hora a 1000 °C con enfriamiento en agua, con el fin de eliminar la textura de laminación. El material en estado de recocido y deformado se caracterizó química y microestructuralmente mediante fluorescencia de rayos X y microscopía electrónica de barrido, respectivamente. Con el fin de evaluar el comportamiento a la corrosión del material, se utilizó la resistencia a la polarización lineal y el análisis mediante las curvas de Tafel en una solución de 0,6 M de NaCl por un tiempo de 0 y 24 horas. Los resultados muestran un comportamiento atípico en cuanto a la resistencia a la corrosión del acero AISI 316L. Se observó un aumento en la resistencia a la corrosión del 45% del material después de 4 pases por GP en comparación con el material recocido (0 pases).

Palabras clave

acero inoxidable austenítico, curvas de Tafel, deformación plástica severa, presión calibrada, resistencia a la polarización lineal, velocidad de corrosión

PDF (English) PDF XML

Citas

[1] L. Jinlong, L. Hongyun, L. Tongxiang, and G. Wenli, “The effects of grain refinement and deformation on corrosion resistance of passive film formed on the surface of 304 stainless steels,” Materials Research Bulletin, vol. 70, pp. 896-907, 2015. https://doi.org/10.1016/j.materresbull.2015.06.030.

[2] S. Tanhaei, K. Gheisari, and S. R. Alavi Zaree, “Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel,” International Journal of Minerals, Metallurgy and Materials, vol. 25 (6), pp. 630-640, 2018. https://doi.org/10.1007/s12613-018-1610-y.

[3] H. Miyamoto, M. Yuasa, R. Muhammad, and H. Fujiwara, “Corrosion Behavior of Severely Deformed Pure and Single-Phase Materials,” Materials Transactions, vol. 60 (7), pp. 1243-1255, 2019. https://doi.org/10.2320/matertrans.mf201935.

[4] X. Wu, Y. Li, Y. Guo, Q. Ruan, and J. Lu, “Grain refinement and mechanical properties of metals processed by constrained groove pressing,” IOP Conference Series:Materials Science and Engineering, vol. 504, e 012027, 2019. https://doi.org/10.1088/1757-899x/504/1/012027.

[5] G. Faraji, H. Kim, and T. Kashi, Severe plastic deformation: methods, processing and properties, United Kingdom, Oxford: Elsevier, 2018.

[6] NKS, Aceros Inoxidables 316 y 316L. Available: https://nks.com/es/distribuidor-de-acero-inoxidable/aceros-inoxidables-316/.

[7] B. Fontalvo-Gelvez, and E. S. Jiménez-Lora “Comportamiento mecánico de un acero AISI 316L sometido a deformación plástica severa por la técnica presión calibrada,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2018

[8] INCETEMA, Potenciostat Galvanostat PG - Tekcorr 4.2 USB, Universidad Tecnológica de Pereira, 2014.

[9] American Society for Testing and Materials, G102-Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, 2015.

[10] S. Kumar, and T. Raghu, "Structural and mechanical behaviour of severe plastically deformed high purity aluminium sheets processed by constrained groove pressing technique," Materials & Design, vol. 57, pp. 114-120, 2014. https://doi.org/10.1016/j.matdes.2013.12.053.

[11] G. E. Dieter, Mechanical Metallurgy, McGraww Hill Book Company, 1988.

[12] J. Avendaño, and E. Escobar, “Estudio de la resistencia a la corrosión de la aleación Ni2+XMn1-XGa en soluciones de NaCl y H2SO4 mediante técnicas electroquímicas,” Grade Thesis, Universidad del Atlántico, Barranquilla, Colombia, 2016.

[13] R. Wiston, and H. Uhlig, “Corrosion and Corrosion Control”, Passivity, Eds. New Jersy: Wiley-Interscience, 2014, pp 90-95.

[14] E. S. Jiménez-Lora, B. A. Fontalvo-Gélvez, O. F. Higuera-Cobos, I. C. Niño-Camacho, and H. A. González-Romero, “Effect generated by the calibrated pressure in the metallographic structure and mechanical properties of AISI 316L austenitic stainless steel,” Prospectiva, vol. 17 (1), 70-74, 2019. https://doi.org/10.15665/rp.v17i1.1825.

[15] American Society for Testing and Materials, G59 - Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, 2014.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.