Skip to main navigation menu Skip to main content Skip to site footer

Optimization of a DNA extraction method using Subepidermis from Austrocylindropuntia and Opuntia-Opuntioideae

Abstract

The taxonomic identification of species through analysis of the variation of orthologous DNA sequences, complement the information obtained with morphological characters. Cytogenetic studies indicate that polyploid taxa occur in the subfamily Opuntioideae, Opuntia ficus-indica, contributing to morphological variability in the individuals of a population, and influencing the correct identification of species. However, the lengths of the sequences in Opuntioideae are affected by the extraction of pure DNA. Different extraction methods were evaluated and modified, and a procedure was established to obtain good quality DNA, free of inhibitors for gene amplification by polymerase chain reaction. The ratio A260/A280 and A260/A230 ranged from 1.6 to 2.1, revealing absence of contamination with the modified protocol for DNA extraction from cotton leaves. This method is inexpensive compared to those of commercial manufacturers and, therefore, can be applied in studies with limited resources.

Keywords

biotechnology;, cactaceae;, polysaccharides;, Sanger sequencing

XML (Español) PDF (Español)

Author Biography

Leidy Yanira Rache-Cardenal

Bióloga, Doctora en Ciencias Biología

Adriana Sofía Albesiano-Hoyos

Bióloga, Doctora en Ciencias Biológicas

Hamidou Tall

Cadre Supérieur Technique en Ucad Dakar, Doctor of Phytopathology


References

  1. Abraján, V. M. A. (2008). Efecto del método de extracción en las características químicas y físicas del mucílago del nopal (Opuntia ficus-indica) y estudio de su aplicación como recubrimiento comestible. Universidad Politécnica de Valencia. https://doi.org/10.4995/THESIS/10251/3794 DOI: https://doi.org/10.4995/Thesis/10251/3794
  2. Abraján, V. P. M. (2007). Evaluación de tres métodos de secado para la extracción y recuperación del gel de tuna (Opuntia subulata) (Tesis de grado). Escuela Superior Politécnica de Chimborazo.
  3. Albesiano, S., & Terrazas, T. (2012). Cladistic analysis of Trichocereus (Cactacea: Cactoideae: Trichocereeae) based on morphological data and chloroplast DNA sequences. Haseltonia, 17, 3-23. https://doi.org/10.2985/1070-0048-17.1.2 DOI: https://doi.org/10.2985/1070-0048-17.1.2
  4. Barbosa, F. dos A., Barbosa, A. da S., Medeiros, G. D. A., Andrade, A. P. de, Rẻgo M. M. do, Silva, J. H. C. S. (2020). Genetic variability in populations of Pilosocereus catingicola (Gürke) Byles & Rowley subsp. salvadorensis (Werderm.) Zappi (Cactaceae). Research, Society and Development, 9 (8), 1–23. http://doi.org/10.33448/rsd-v9i8.5521 DOI: https://doi.org/10.33448/rsd-v9i8.5521
  5. Cardeño-Londoño, E., & Rodríguez-Herrera, M. P. (2020). Biología reproductiva de tres especies vulnerables Mammillaria columbiana, Opuntia pittieri y Opuntia ficus-indica Cactaceae en Boyacá, Colombia (Tesis de grado). Universidad de la Salle, Colombia. https://ciencia.lasalle.edu.co/biologia/82/
  6. Cota-Sánchez, J. H., Remarchuk, K., & Ubayasena, K. (2006). Ready to use DNAextracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter, 24, 161–167. https://doi.org/10.1007/BF02914055 DOI: https://doi.org/10.1007/BF02914055
  7. De la Cruz, M., Ramirez, F., & Hernández, H. (1997). DNA isolation and amplification from cacti. Plant Molecular Biology Reporter, 15, 319–325. https://doi.org/10.1023/A:1007428818078 DOI: https://doi.org/10.1023/A:1007428818078
  8. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1, 19–21. https://doi.org/10.1007/BF02712670 DOI: https://doi.org/10.1007/BF02712670
  9. Dennis, E. S., Ellis, J., Green, A., Llewellyn, D., Morell, M., Tabe, L., & Peacock, P. W. (2007). Genetic contributions to agricultural sustainability. Philosophical Transactions of the Royal Society Biological Sciences, 363, 591-609. https://doi.org/10.1098/rstb.2007.2172 DOI: https://doi.org/10.1098/rstb.2007.2172
  10. Díaz, C. B., Gómez, F. R. L., Rosas-Espinoza, V. C., Pérez, V. L. I., & Castro-Félix, P. (2006). Obtención de ADN de cactáceas: comparación de dos métodos de extracción en Ferocactus histrix. Avances en la Investigación Científica en el Cuba, 19, 123–130.
  11. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus (Madison), 12, 13–15.
  12. Falcón, L. I., & Valera, A. (2007). Extracción de ácidos nucleicos. En L. E.Eguiarte, V. Souza, X. Aguirre (Eds). Ecología Molecular (pp. 499-515). Instituto Nacional de Ecología, Conabio, México.
  13. Fehlberg, S. D., Allen, J. M., & Church, K. (2013). A novel method of genomic DNA extraction for Cactaceae. Applications in Plant Sciences, 1(3), 1–4. https://doi.org/10.3732/apps.1200013 DOI: https://doi.org/10.3732/apps.1200013
  14. Guillemaut, P., & Maréchal-Drouard, L. (1992). Isolation of plant DNA: a fast, inexpensive, and reliable method. Plant Molecular Biology Reporter, 10, 60–65. https://doi.org/10.1007/BF02669265 DOI: https://doi.org/10.1007/BF02669265
  15. Guzmán, L. D., & Chávez, J. (2007). Estudio bromatológico del cladodio del nopal (Opuntia ficus-indica) para el consumo humano. Revista de la Sociedad Química del Perú, 73(1), 41–45.
  16. Haymes, K. M. (1996). Mini-prep method suitable for a plant breeding program. Plant Molecular Biology Reporter, 14, 280–284. https://doi.org/10.1007/BF02671664 DOI: https://doi.org/10.1007/BF02671664
  17. Hoisington, D., Khairallah, M., Reeves, T., Ribaut, J. M, Skovmand, B., Taba, S., & Warburton, M. (1999). Plant genetic resources: what can they contribute toward increased crop productivity?. Proceedings of the National Academy of Sciences, 96, 5937–43. https://doi.org/10.1073/pnas.96.11.5937 DOI: https://doi.org/10.1073/pnas.96.11.5937
  18. Kalegowda, P., Chauhan, A. S., & Mysore, N. S. (2017). Opuntia dillenii (Ker-Gawl) Haw cladode mucilage: Physico-chemical, rheological and functional behavior. Carbohydrate Polymers, 157 (10), 1057–1064. https://doi.org/10.1016/j.carbpol.2016.10.070 DOI: https://doi.org/10.1016/j.carbpol.2016.10.070
  19. Keb-Llanes, M., Gonzalez, G., Chi-Manzanero, B., & Infante, D. (2002). A rapid and simple method for small scale DNA extraction in Agavaceae and other tropical plants. Plant Molecular Biology Reporter, 20, 299a-299e. https://doi.org/10.1007/BF02782465 DOI: https://doi.org/10.1007/BF02782465
  20. Lorenzo, F. D., Silipo, A., Molinaro, A., Parrilli, M., Schiraldi, C., D´Agostino, A., Izzo, E., Rizza, L., Bonina, A., Bonina, F., & Lanzetta, R. (2017). The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: structure and skin repairing properties. Carbohydrate Polymers, 157, 128–136. https://doi.org/10.1016/j.carbpol.2016.09.073 DOI: https://doi.org/10.1016/j.carbpol.2016.09.073
  21. Martínez-González, C. R., Ramírez-Mendoza, R., Jiménez-Ramírez, J., Gallegos-Vázquez, C., & Luna-Vega, I. (2017). Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods, 13(82). https://doi.org/10.1186/s13007-017-0234-y DOI: https://doi.org/10.1186/s13007-017-0234-y
  22. Mihalte, L. A., Sestras, R., & Feszt, G. (2008). Assessing genetic variability at different genotypes of cacti plants by means of RAPD analysis. Bull. University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca. Horticulture, 65 (1), 110–115. http://doi.org/10.15835/buasvmcn-hort:471
  23. Mondragon-Jacobo, C., & Bordelon, B. B. (1996). Cactus pear (Opuntia spp. Cactaceae) breeding for fruit production. Journal of the Professional Association for Cactus Development, 1,19–35.
  24. Mondragón-Jacobo, C., Doudareva, N., & Bordelon, B. P. (2000). DNA extraction from several cacti. Horticultural Science, 35(6), 1124–1126. https://doi.org/10.21273/HORTSCI.35.6.1124 DOI: https://doi.org/10.21273/HORTSCI.35.6.1124
  25. Nobel, P. S., & Cavelier, J. (1992). Mucilage in cacti: its apoplastic capacitance, associated solutes, and influence on tissue water relations. Journal of Experimental Botany, 43, 641–648. http://www.jstor.org/stable/23694093 DOI: https://doi.org/10.1093/jxb/43.5.641
  26. Pandey, R. N., Adams, R. P., & Flournoy, L. E. (1996). Inhibition of random amplified polymorphic DNAs (RAPDs) by plant polysaccharides. Plant Molecular Biology Reporter, 14, 17-22. https://doi.org/10.1007/BF02671898 DOI: https://doi.org/10.1007/BF02671898
  27. Paz-Guerrero, F., Casas, A., & Alvarado-Sizzo, H. (2019). Habitat fragmentation and population genetics of Stenocereus quevedonis (Cactaceae) in Michoacán, México: bases for in situ conservation of silvicultural managed genetic resources. Genetic Resources and Crop Evolution, 66(3), 633–643. https://doi.org/10.1007/s10722-018-00737-7. DOI: https://doi.org/10.1007/s10722-018-00737-7
  28. Pérez, M. L., Tejera, F. F., Darias, M. J., Rodríguez, R. E. M., & Díaz, R. C. (2015). Physicochemical characterization of cactus pads from Opuntia dillenii and Opuntia ficus indica. Food Chemistry, 188(1), 393–398. https://doi.org/10.1016/j.foodchem.2015.05.011 DOI: https://doi.org/10.1016/j.foodchem.2015.05.011
  29. Phillips, M. W., Astorga, D. C., & Quirós, S. O. (2003). Método 2X CTAB-minipreparaciones. Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica.
  30. Porras-Flores, D., Albesiano, S., & Arrieva-Violet, L. (2017). El género Opuntia (Opuntioideae-Cactaceae) en el departamento de Santander, Colombia. Biota Colombiana, 18(2), 111-131. https://doi:10.21068/c2017.v18n02a07 DOI: https://doi.org/10.21068/c2017.v18n02a07
  31. Qiu, Y. K., Zhao, Y. Y., Dou, D. Q., Xu, B. X., & Liu, K. (2007). Two New alpha-pyrones and other components from the cladodes of Opuntia dillenii. Archives of Pharmacal Research, 30 (6), 665–669. https://doi.org/10.1007/BF02977624 DOI: https://doi.org/10.1007/BF02977624
  32. Rache-Cardenal, L. Y., Mora-Oberlaender, J., & Chaparro-Giraldo, A. (2013). Study of gene flow from GM cotton (Gossypium hirsutum) varieties in ‘El Espinal’ (Tolima, Colombia). Acta Biológica Colombiana, 18 (3), 489–498.
  33. Raimundo, J., Gaspar, R. C. M., & Ribeiro, M. M. (2018). Rapid, simple and potentially universal method for DNA extraction from Opuntia spp. fresh cladode tissues suitable for PCR amplification. Molecular Biology Reports, 45 (5), 1405–1412. https://doi.org/10.1007/s11033-018-4303-8 DOI: https://doi.org/10.1007/s11033-018-4303-8
  34. Realini, M. F., González, G. E., Font, F., Picca, P. I., Poggio, L., & Gottlieb, A. M. (2015). Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South America. Plant Systematics and Evolution, 301(4), 1123–1134. http://doi: 10.1007/s00606-014-1154-1 DOI: https://doi.org/10.1007/s00606-014-1154-1
  35. Rodríguez-Mendoza, C., Hernández, L., Pérez-Armendáriz, B., & Juárez, Z. (2021). Bacterias y hongos endófitos de la familia Cactaceae y sus aplicaciones. TIP. Revista Especializada en Ciencias Químico-Biológicas, 24, 1-14. https://doi:10.22201/fesz.23958723e.2021.328 DOI: https://doi.org/10.22201/fesz.23958723e.2021.328
  36. Rosas-Reinhold, I., Sánchez, D., & Arias, S. (2022). Systematic study and niche differentiation of the genus Aporocactus (Hylocereeae, Cactoideae, Cactaceae). Botanical Sciences, 1(1). http://doi: 10.17129/botsci.2893 DOI: https://doi.org/10.17129/botsci.2893
  37. Rowland, L. J., & Nguyen, B. (1993). Use of polyethylene glycol for purification of DNA from leaf tissue of woody plants. Biotechniques, 14 (5),734–736.
  38. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1982). Molecular cloning: a laboratory manual. Cold Sprin Harbor Laboratory, New York. http://doi.org/10.1016/0307-4412(83)90068-7 DOI: https://doi.org/10.1016/0307-4412(83)90068-7
  39. Sánchez-Hernández, C., & Gaytán-Oyarzún, J. C. (2006). Two mini-preparation protocols to DNA extraction from plants with high polysaccharide and secondary metabolites. African Journal of Biotechnology, 5(20), 1864–1867.
  40. Sánchez-Olaya, D. M., Rodriguez-Perez, W., Castro-Rojas, D. F., & Trujillo-Trujillo, E. (2019). Respuesta agronómica de mucilago de cacao (Theobroma cacao L.) en cultivo de maíz (Zea mays L.). Ciencia en Desarrollo, 10 (2), 43–58. https://doi:10.19053/01217488.v10.n2.2019.7958 DOI: https://doi.org/10.19053/01217488.v10.n2.2019.7958
  41. Shedbalkar, U. U., Adki, V. S., Jadhav, J. P., & Bapat V. A. (2010). Opuntia and other cacti: applications and biotechnological insights. Tropical Plant Biology, 3, 136–150. https://doi.org 10.1007/s12042-010-9055-0 DOI: https://doi.org/10.1007/s12042-010-9055-0
  42. Sue-Porebski, Grant-Bailey, L., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15, 8–15. https://doi.org/10.1007/BF02772108 DOI: https://doi.org/10.1007/BF02772108
  43. Wang, X. N, Felker, P., Burow, M. D., & Paterson, A. H. (1998). Comparison of RAPD marker patterns to morphological and physiological data in the classification of Opuntia accessions. Journal of the Professional Association for Cactus Development, 3: 3–14.
  44. Yáñez-López, M. de L., Barbosa-Martínez, C., Serrato-Díaz, A., Balderas-Morales, A., Campos-Muñiz, C., Fernández, F. J., & Armella-Villalpando, M. A. (2016). Genetic relationships between varieties of Stenocereus pruinosus (Cactaceae) in the states of Puebla and Oaxaca, Mexico, by means of AFLP markers. Agrociencia, 50 (5), 595–601.

Downloads

Download data is not yet available.