Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Modelo matemático para predecir la estabilidad a temperaturas cercanas al ambiente de la bacteria Brevibacterium celere C-924

Resumen

El oxígeno se ha identificado como una de las principales causas que conducen a daños por desecación, mientras que el tiempo que el microorganismo está expuesto a condiciones ambiente puede contribuir a su degradación. En el Centro de Ingeniería Genética y Biotecnología de Camagüey, se desarrolló un producto ecológico de formulación sólida con probada acción bionematicida llamado HeberNem-S®, cuyo ingrediente activo es la bacteria Gram positiva Brevibacterium celere C-924. En el presente trabajo se realizó un estudio de estabilidad del ingrediente activo del producto HeberNem-SÒ a las temperaturas de 16, 28 y 37 ºC sin vacío. Como resultado del estudio se obtuvo un modelo matemático que simula la degradación que ocurre en el rango de temperaturas evaluadas y sin vacío. El modelo matemático logarítmico-exponencial obtenido permite estimar el grado de supervivencia ante modificaciones ambientales asociadas a los parámetros estudiados, sin necesidad de realizar evaluaciones experimentales de determinación de la viabilidad.

Palabras clave

brevibacterium celere C-924;, HeberNem-S;, temperatura;, viabilidad

PDF XML

Biografía del autor/a

Yunier Luis Paneque-Díaz

Ingeniero Químico, Máster en Análisis de Procesos Químicos

Nemecio González-Fernández

Licenciado en Química, Doctor en Ciencias Técnicas

Lourdes Mariana Crespo-Zafra

Ingeniera Química, Doctora en Ciencias Técnicas

Jesús Zamora-Sánchez

Licenciado en Radioquímica, Máster en Ciencias Microbiológicas

Rutdali María Segura-Silva

Ingeniera Química, Máster en Análisis de Procesos Químicos

Amaury Pérez-Sánchez

Ingeniero Químico


Citas

  1. Achour, M., Mtimet, N., Cornelius, C., Zgouli, S., Mahjoub, A., Thonart, P., & Hamdi, M. (2001). Application of the accelerated shelf life testing method (ASLT) to study the survival rates of freeze-dried Lactococcus starter cultures. Journal of Chemical Technology and Biotechnology, 76 (6), 624-628. https://doi.org/10.1002/jctb.427 DOI: https://doi.org/10.1002/jctb.427
  2. Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15 (4), 399-409. https://doi.org/10.1016/j.idairyj.2004.08.004 DOI: https://doi.org/10.1016/j.idairyj.2004.08.004
  3. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against Infection of Arabidopsis Roots by Pseudomonas syringae Is Facilitated by Biofilm Formation and Surfactin Production. Plant Physiology, 134 (1), 307–319. https://doi.org/10.1104/pp.103.028712 DOI: https://doi.org/10.1104/pp.103.028712
  4. Barbosa, J. C., Almeida, D., Machado, D., Sousa, S., Freitas, A. C., Andrade, J. C., & Gomes, A. M. (2022). Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage. Pharmaceuticals, 15, 268. https://doi.org/10.3390/ph15050628 DOI: https://doi.org/10.3390/ph15050628
  5. Behboudi-Jobbehdar, S., Soukoulis, C., Yonekura, L., & Fisk, I. (2013). Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Drying Technology, 31, 1274–1283. https://doi.org/10.1080/07373937.2013.788509 DOI: https://doi.org/10.1080/07373937.2013.788509
  6. Betancourt, E. (2006). Diseño de un nuevo proceso de fermentación del bionematicida HeberNem (Tesis de Diploma). Universidad de Camagüey, Camagüey, Cuba.
  7. Bommasamudram, J., Muthu, A., & Devappa, S. (2022). Effect of sub-lethal heat stress on viability of Lacticaseibacillus casei N in spray-dried powders. LWT - Food Science and Technology, 155, 112904. https://doi.org/10.1016/j.lwt.2021.112904 DOI: https://doi.org/10.1016/j.lwt.2021.112904
  8. CIGB. (2019). Especificación de Producto Terminado - HeberNem-S. NP 5080, 9. Camagüey, Cuba: Centro de Ingeniería Genética y Biotecnología.
  9. Dong, L. Q., & Zhang, K. Q. (2006). Microbial control of plant-parasitic nematodes: a five-party interaction. Plant and Soil, 288(1-2), 31-45. https://doi.org/10.1007/s11104-006-9009-3 DOI: https://doi.org/10.1007/s11104-006-9009-3
  10. Fillor, L. (2013). Propuesta de escalado para el secado por aspersión del bionematicida HeberNem-S (Tsukamurella paurometabola, C-924) (Tesis de Diploma). Universidad de Camagüey, Camagüey, Cuba.
  11. França, M. B., Panek, A. D., & Eleutherio, E. C. A. (2007). Oxidative stress and its effects during dehydration. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(4), 621-631. https://doi.org/10.1016/j.cbpa.2006.02.030 DOI: https://doi.org/10.1016/j.cbpa.2006.02.030
  12. Golowczyc, M. A., Gerez, C. L., Silva, J., Abraham, A. G., Antoni, G. L. D., & Teixeira, P. (2010). Survival of spray-dried is affected by different protectants and storage conditions. Biotechnology Leters, 33 (4), 681-686. https://doi.org/10.1007/s10529-010-0491-6 DOI: https://doi.org/10.1007/s10529-010-0491-6
  13. Golowczyc, M. A., Silva, J., Abraham, A. G., Antoni, G. L. D., & Teixeira, P. (2010). Preservation of probiotic strains isolated from kefir by spray drying. Letters in Applied Microbiology, 50, 7-12. https://doi.org/10.1111/j.1472-765X.2009.02759.x DOI: https://doi.org/10.1111/j.1472-765X.2009.02759.x
  14. González, N. (2010). Tecnología de fermentación del agente biológico activo del bionematicida HeberNem (Tesis Doctoral). Universidad de Camagüey, Camagüey, Cuba.
  15. González, N., Ramos, L., Narciandi, E., Mayo, O., & Zamora, J. (2013). Tecnología de fermentación del agente biológico activo del bionematicida HeberNem®. Revista Cubana de Química, XXV (1), 55-65.
  16. Hamsupo, K., Sukyai, P., Loiseau, G., Nitisinprasert, S., Montet, D., & Wanchaitanawong, P. (2005). Prediction of the stability of spray-dried Lactobacillus reuteri KUB-AC5 by Arrhenius equation for long-term storage. Journal of Microbiology and Biotechnology, 15(6), 1178-1182.
  17. Herigstad, B., Hamilton, M., & Heersink, J. (2001). How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods, 44(2), 121–129. https://doi.org/10.1016/s0167-7012(00)00241-4 DOI: https://doi.org/10.1016/S0167-7012(00)00241-4
  18. Hernández, A. (2002). Cultivo de una cepa nematicida de Corynebacterium paurometabolum hasta una escala de 50 L (Tesis de Maestría). Universidad de La Habana, La Habana, Cuba.
  19. Hernández, A. (2009). Evaluación y predicción del estado de anhidrobiosis en Tsukamurella Paurometabola C-924 (Tesis Doctoral). Universidad de la Habana, La Habana, Cuba.
  20. Hernández, A., Expósito, M., & Olivera, V. (1998). Establecimiento del intervalo de ph para el control de la concentración de amonio extracelular, durante el cultivo de C. paurometabolum. Revista Cubana de Química, 4 (10), 170-176.
  21. Hernández, A., Sánchez, H., Olivera, V., Expósito, M., González, N., & Wong, I. (2000). Estimating the growth of Corynebacterium paurometabolum in heterogeneous media. Process Biochemistry, 35(9), 873-876. https://doi.org/10.1016/S0032-9592(99)00113-2 DOI: https://doi.org/10.1016/S0032-9592(99)00113-2
  22. Hernández, A., Weekers, F., Mena, J., Pimentel, E., Zamora, J., Borroto, C., & Thonart, P. (2007). Culture and spray-drying of Tsukamurella paurometabola C-924: stability of formulated powders. Biotechnology Leters, 29 (11), 1723-1728. https://doi.org/10.1007/s10529-007-9436-0 DOI: https://doi.org/10.1007/s10529-007-9436-0
  23. Hernández, Z., Rangel, E., Castro, J., Gómez, C. A., Cadena, A., Acevedo, O. A., & Falfán, R. N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT - Food Science and Technology, 95, 216-222. https://doi.org/10.1016/j.lwt.2018.04.075 DOI: https://doi.org/10.1016/j.lwt.2018.04.075
  24. Jantzen, M., Göpel, A., & Beermann, C. (2013). Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. Journal of Applied Microbiology, 115, 1029-1036. https://doi.org/10.1111/jam.12293 DOI: https://doi.org/10.1111/jam.12293
  25. Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., & Fortnum, B. A. (1999). Survey of Crop Losses in Response to Phytoparasitic Nematodes in the United States for 1994. Journal of Nematology, 31(4S), 587–618. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620402/pdf/587.pdf
  26. Lapsiri, W., Bhandari, B., & Wanchaitanawong, P. (2012). Viability of Lactobacillus plantarum TISTR 2075 in Different Protectants during Spray Drying and Storage. Drying Technology, 30 (13), 1407-1412. http://dx.doi.org/10.1080/07373937.2012.684226 DOI: https://doi.org/10.1080/07373937.2012.684226
  27. Leung, S. S. Y., Parumasivam, T., Nguyen, A., Gengenbach, T., Carter, E. A., Carrigy, N. B., & Chan, H.-K. (2018). Effect of storage temperature on the stability of spray dried bacteriophage powders. European Journal of Pharmaceutics and Biopharmaceutics, 127, 213-222. https://doi.org/10.1016/j.ejpb.2018.02.033 DOI: https://doi.org/10.1016/j.ejpb.2018.02.033
  28. López, E. (2014). Alternativa tecnológica para la obtención del Heberfort (Tesis de Diploma). Universidad de Camagüey, Camagüey, Cuba.
  29. Maciel, G. M., Chaves, K. S., Grosso, C. R. F., & Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. Journal of Dairy Science, 97(4), 1991-1998. http://dx.doi.org/10.3168/jds.2013-7463 DOI: https://doi.org/10.3168/jds.2013-7463
  30. Marin, M., Mena, J., Franco, R., Pimentel, E., & Sánchez, I. (2010). Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C 924 and Glomus fasciculatum and Glomus clarum fungi on lettuce microrrizal colonization and foliar weight. Biotecnología Aplicada, 27 (1), 48-51.
  31. Marín, M., Wong, I., García, G., Morán, R., Basulto, R., Pimentel, E., & Mena, J. (2013a). Actividad antagónica in vitro de Tsukamurella paurometabola C-924 frente a fitopatógenos. Revista de Protección Vegetal, 28(2), 132-137.
  32. Marín, M., Wong, I., Mena, J., Morán, R., Pimentel, E., Sánchez, I., Moreira, A. (2013b). Zea mays L. plant growth promotion by Tsukamurella paurometabola strain C-924. Biotecnología Aplicada, 30(2), 105-110.
  33. Martins, E., Cnossen, D. C., Silva, C. R. J., Junior, J. C. C., Nero, L. A., Perrone, I. T., & Carvalho, A. F. (2019). Determination of ideal water activity and powder temperature after spray drying to reduce Lactococcus lactis cell viability loss. Journal of Dairy Science, 102 (7), 6013–6022. https://doi.org/10.3168/jds.2019-16297 DOI: https://doi.org/10.3168/jds.2019-16297
  34. Masters, K. (1991). Spray Drying Handbook (5th ed.). London: Longman Scientific & Technical.
  35. Mena, J., Pimentel, E., Hernández, A., Veloz, L., Vázquez, R., León, L., & Borroto, C. (2002). Mechanism of action of Tsukamurella paurometabola C-924 on nematodes. Nematology, 4(2), 287.
  36. Mena, J., Pimentel, E., Veloz, L., Hernández, A. T., León, L., Ramírez, Y., & Raíces, M. (2003). Aislamiento y determinación de cepas bacterianas con actividad nematicida. Mecanismo de acción de C. paurometabolum C-924 sobre nemátodos. Biotecnología Aplicada, 20(4), 248-252.
  37. Mezhericher, M., Levy, A., & Borde, I. (2015). Multi-Scale Multiphase Modeling of Transport Phenomena in Spray-Drying Processes. Drying Technology, 33 (1), 2-23. http://dx.doi.org/10.1080/07373937.2014.941110 DOI: https://doi.org/10.1080/07373937.2014.941110
  38. Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying: A review. Journal of Microbiological Methods, 66 (2), 183-193. https://doi.org/10.1016/j.mimet.2006.02.017 DOI: https://doi.org/10.1016/j.mimet.2006.02.017
  39. Paneque, Y. L. (2010). Caracterización fenomenológica del proceso de secado por atomización del HeberNem-S en el Centro de Ingeniería Genética y Biotecnología (Tesis de Diploma). Universidad de Camagüey, Camagüey, Cuba.
  40. Pérez, A., Paneque, Y. L., Ramos, L., Zamora, J., & Crespo, L. M. (2017). Evaluation of a tubular heat exchanger for preheating a cell suspension of Tsukamurella paurometabola. Ingeniería, Investigación y Tecnología, XVIII (5), 331-340. DOI: https://doi.org/10.22201/fi.25940732e.2017.18n3.029
  41. Poddar, D., Das, S., Jones, G., Palmer, J., Jameson, G. B., Haverkamp, R. G., & Singh, H. (2014). Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. International Dairy Journal, 39, 1-7. http://dx.doi.org/10.1016/j.idairyj.2014.04.007 DOI: https://doi.org/10.1016/j.idairyj.2014.04.007
  42. Ramos, L. (2011). Influencia del proceso de secado por atomización en la viabilidad celular de la Tsukamurella paurometabola C-924 del bionematicida HeberNem-S (Tesis de Diploma). Universidad de Camagüey, Camagüey, Cuba.
  43. Reyes, V. V. (2017). Comparative Viability of Spray Dried Lactobacilli Affected by Different Protective Agents and Storage Conditions (Master of Science Thesis). Louisiana State University, Louisiana, USA.
  44. Sarkar, S., Dias, J., Keeley, J., Möhring, N., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. Belgium: Policy Department, Directorate-General for External Policies. https://doi.org/10.2861/28995
  45. Scenna, N. J. (1999). Modelado, simulación y optimización de procesos químicos. Argentina: Universidad Tecnológica Nacional.
  46. Trinh, K. T. L., & Lee, N. Y. (2022). Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens, 11, 1057. https://doi.org/10.3390/pathogens11091057 DOI: https://doi.org/10.3390/pathogens11091057
  47. Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. http://dx.doi.org/10.1016/j.jff.2013.10.008 DOI: https://doi.org/10.1016/j.jff.2013.10.008
  48. Zhang, Y., Lin, J., & Zhong, Q. (2016). Effects of media, heat adaptation, and outlet temperature on the survival of Lactobacillus salivarius NRRL B-30514 after spray drying and subsequent storage. LWT - Food Science and Technology, 74, 441-447. http://dx.doi.org/10.1016/j.lwt.2016.08.008 DOI: https://doi.org/10.1016/j.lwt.2016.08.008
  49. Zhu, Z., Luan, C., Zhang, H., Zhang, L., & Haoa, Y. (2016). Effects of spray drying on Lactobacillus plantarum BM-1 viability, resistance to simulated gastrointestinal digestion, and storage stability. Drying Technology, 34(2), 177-184. http://dx.doi.org/10.1080/07373937.2015.1021009 DOI: https://doi.org/10.1080/07373937.2015.1021009
  50. Ziadi, M., Touhami, Y., Achour, M., Thonart, P., & Hamdi, M. (2005). The effect of heat stress on freeze-drying and conservation of Lactococcus. Biochemical Engineering Journal, 24 (2), 141-145. https://doi.org/10.1016/j.bej.2005.02.001 DOI: https://doi.org/10.1016/j.bej.2005.02.001

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.