Cálculo de um indicador básico de qualidade de vida de secções para Bogotá por censo através da análise factorial
Resumo
O objetivo do artigo é calcular e espacializar um indicador básico de qualidade de vida por seções de censos para Bogotá, de acordó com a informação disponível no censo de 2005. Para ese fim, uma análise fatorial é utilizada para establecer um índice que agrega as variáveis selecionadas e uma análise espacial que permite definir se existe umacorrelação espacial do índice. O que precede é parte de uma reflexão sobre os indicadores para medir a qualidade de vida e a importância da sua espacialização em uma escala que permite a compreensão de padrões de diferenciação de grupos sociais no espaço urbano. Como descobertas, identifica-se grupos de baixaqualidade de vida que excedem o alcance da localidade e, em outros casos, uma grande diversidade dentro dessa entidade.
Palavras-chave
Calidad de vida, análisis espacial, análisis factorial.
Biografia do Autor
Diva Marcela Garcia Garcia
Socióloga, magister en urbanismo y máster en estudios territoriales y de la población. Candidata a Doctorado en Demografía. Profesora departamento de sociología Pontificia Universidad Javeriana Sede Bogotá.
Referências
- Abascal Fernández, E y Landaluce Calvo, Mª. I. (2002). Análisis factorial múltiple como técnica de estudio de la estabilidad de los resultados de un análisis de componentes principales. Qüestiió (Quaderns d'estadística i investigació operativa). vol. 26, 1-2, p. 109-122. Universitat Poltècnica de Catalunya. Barcelonatech. Barcelona.
- Aliaga, Lissette & Álvarez, Maria (2010). Segregación residencial en Bogotá a través del tiempo y diferentes escalas. Documento de trabajo del Lincoln Institute of Land Policy. Bogotá.
- CELADE (Centro Latinoamericano y Caribeño de demografía). (1999). “Vulnerabilidad demográfica y desventajas sociales: el caso de Chile”. Área de Población y Desarrollo. LC/DEM/R.299, Santiago de Chile.
- Comery, Andrew. (1985). Manual de análisis factorial. Adiciones cátedra. Madrid. Título original: A first course in factor analysis. Jaime Cabrebra (traductor).
- Estrada, L. & Moreno, S.L. (2013). Análisis espacial de la pobreza multidimensional en Colombia a partir del Censo de Población de 2005. Revista IB Dane. Vol. 3, No. 1.
- Feres, C., & Mancero, X. (2001). Enfoques para la medición de la pobreza. Breve revisión de literatura. En Cepal (editor de la serie) Estudios estadísticos y prospectivos. Vol. 4. Santiag: ONU.
- Galvis, L. A., & Meisel, A. (2010). Persistencia de las desigualdades regionales en Colombia: Un análisis espacial. Documento de trabajo sobre economía regional, (120). Banco de la República.
- Giraldo Henao, Ramón. (2011). Estadística Espacial. Notas de clase. Departamento de Estadística, Universidad Nacional de Colombia.
- Johnson, Richard Arnold. (2007). Applied multivariate statistical analysis. PearsonPrentice Hall. Pearson Education, Inc. Upper Saddle River: New Jersey 07458.
- Mayorga, J. M., García-García, D. M. y Hernández, L. (2017). Calidad de vida y su correlación con los precios del suelo: aproximación a la segregación residencial en Bogotá. Cuadernos de Vivienda y Urbanismo, 10(19), 22-40. https://doi.org/10.11144/Javeriana.cvu10-19.cvcp
- Méndez Martínez, Carolina; Rondón Sepúlveda, Martín Alonso. (2012). Introducción al análisis factorial exploratorio. Revista Colombiana de Psiquiatría, vol. 41, núm. 1, enero-abril, pp. 197-207. Asociación Colombiana de Psiquiatría, Bogotá, D.C.
- Montoya Suarez, Omar. (2007). Aplicación del análisis factorial a la investigación de mercados. Caso de estudio. Scientia et Technica. Año XIII, No 35, Agosto. Universidad Tecnológica de Pereira. ISSN 0122-1701
- Morales Vallejo, Pedro. (2013). El Análisis Factorial en la construcción e interpretación de tests, escalas y cuestionarios.Universidad Pontificia Comillas, Madrid. Facultad de Ciencias Humanas y Sociales. Documento disponible en: http://www.upcomillas.es/personal/peter/investigacion/AnalisisFactorial.pdf.Fecha de consulta:abril 18 de 2016.
- Paradis, Emmanuel. (2015). Moran´s Autocorrelation Coefficient in Comparative Methods. Nov. 29. Disponible en: https://cran.r-project.org/web/packages/ape/vignettes/MoranI.pdf. Fecha de consulta: abril 7 de 2016.
- Sabatini, F. (2003). La segregación social del espacio en las ciudades de América Latina. Cuadernos de Instituto de Estudios Urbanos, Universidad Católica de Chile, Serie Azul, 35, 59–70. Retrieved from http://www.iadb.org.uy/sds/doc/SOCSabatiniSegregacion.pdf
- Sánchez Rivero, Marcelino. (2008). Análisis espacial de datos y turismo: Nuevas técnicas para el análisis turístico. Una aplicación a caso extremeño. Revista de Estudios Empresariales. Segunda época. Número 2. Páginas 48-66.
- Spicker P. (1999) Definitions of poverty: eleven clusters of meaning. En Gordon, David y Spicker P. (Eds). The international glossary on poverty. Zed Books. London.
- Vargas Mesa, O. M. (2012). Aproximación espacial al estudio de la pobreza en Colombia: un estudio aplicado con información del año 2005. Universidad del Valle. Facultad de Ciencias Sociales y Económicas. Disponible en: http://bibliotecadigital.univalle.edu.co/bitstream/10893/3690/4/CB-0449663.pdf
- Vilalta y Perdomo, Carlos Javier. (2005). Cómo enseñar autocorrelación espacial. Economía, Sociedad y Territorio, vol. V, Número 18, mayo-agosto, pp. 323-333. El Colegio Mexiquense, A.C. Toluca, México.
- Yong, An Gie y Pearce, Sean. (2013). A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis. Tutorials in Quantitative Methods for Psychology, Vol. 9(2), p. 79-94. University of Ottawa. Ottawa.