Comparative study of three zootechnical additives on the production and sanitary behavior of pigs in the post-weaning stage
Abstract
The objective of the study was to compare the effect of three additives (two probiotics and antibiotic) on productive performance and health of pigs in the post-weaning period. For this 120 barrows of the crossing Landrace x Large White with father Belgian White x Petrain were used, they were of 28 days of age and 6.87 kg, divided into three experimental groups based on a completely randomized design and each one with four replications The treatments (T) evaluated were; 1 kg of virginiamycin at 2% per ton of feeding (T1), 1 kg of probiotic with Saccharomyces cerevisiae, Bacillus subtilis and digestive enzymes per ton of feeding (T2) and 15 mL of Ecuadorian preparation with lactic acid bacteria, yeasts and enzymes per kg of body weight (BW) of animals (T3). In this last group it was where the highest final bodyweight was obtained (25.85 kg, P <0.0001) and the best total weight gain (18.97 kg, P <0.0001) and daily (451.75 g /d, P <0.0001). Also, for the same group the conversions of dry matter, crude protein and metabolizable energy were found to be more efficient (1.52 kg/kg of BW; 381.57 g/ kg of PV and 22.99 MJ / kg of BW, respectively). The percentage of animals with diarrhea differed (P <0.0001) between the group that received virginiamycin (50.61%) and microbial additives (27.98% and 21.39%), with no differences between these last two. It is concluded that microbial additives improve the productive and sanitary performance of post -weaning pigs with regards to virginiamycin, and this effect was greater with the Ecuadorian microbial preparation.
Keywords
animals with diarrhea, food additives, probiotic, virginiamycin.
References
- (1) Davies P. Intensive Swine Production and Pork Safety. Foodborne Pathogens and disease. 2011; 8: 189-201. DOI: http://dx.doi.org/10.1089/fpd.2010.0717. DOI: https://doi.org/10.1089/fpd.2010.0717
- (2) Cajarville C, Brambillasca S, Zumino P. Utilización de prebióticos en monogástricos: aspectos fisiológicos y productivos relacionados al uso de subproductos de agroindustrias y de pasturas en lechones. Revista Porcicultura Iberoamericana. 2011; 1: 1-11.
- (3) Errecalde JO. Uso de antimicrobianos en animales de consumo. Incidencia del desarrollo de resistencias en salud pública. Producción y sanidad animal. Roma, Italia. 2004. 61 p.
- (4) Maron D, Smith T, Nachman K. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Globalization and Health. 2013; 9: 1-11. DOI: http://dx.doi.org/10.1186/1744-8603-9-48. DOI: https://doi.org/10.1186/1744-8603-9-48
- (5) Regulation EC No 1831/2003 of the European Parliament and Council of 22 September 2003 on additives for use in animal nutrition. Official J. Eur. Commun. 2003. L268, 29-43
- (6) Food and Agriculture Organization of the United Nations/World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria in food. October 1-4 2001. Cordoba, Argentina. Disponible en: http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf.
- (7) Gutiérrez L, Montoya O, Vélez J. Probióticos: Una alternativa de producción limpia y de reemplazo a los antibióticos promotores de crecimiento en la alimentación animal. Producción + limpia. 2013; 8:135.
- (8) Jurado H, Pazmiño S, Benavidez V. Evaluación del efecto probiótico de Lactobacillus plantarum en la alimentación de lechones en fase de pre ceba como una alternativa del uso de antibióticos. Rev. Investigación Pecuaria. 2013; 2:55.
- (9) Quemac M. Evaluación de tres dosis de probiótico (Rhodopseudomonas spp, Lactobacillus spp., Saccharomyces spp.) en la alimentación para el engorde de cerdos. Tesis de Ingeniería, Universidad Estatal Politécnica del Carchi, Tulcán, Ecuador, 2014.
- (10) Díaz B, Elías A, Valiño E. Consorcios microbianos con actividad acido-láctica promisoria aislados desde inoculantes bacterianos nativos para ensilajes. Rev. Cien. Agri. 2014; 11:17-25. DOI: http://dx.doi.org/10.19053/01228420.3484. DOI: https://doi.org/10.19053/01228420.3484
- (11) Flores-Mancheno LG, García-Hernández Y, Proaño-Ortiz FB, Caicedo-Quinche WO. Evaluación de tres dosis de un preparado microbiano, obtenido en Ecuador, en la respuesta productiva y sanitaria de cerdos en posdestete. Rev. Cien. Agri. 2015; 12(2):59-70. DOI: http://dx.doi.org/10.19053/01228420.4392. DOI: https://doi.org/10.19053/01228420.4392
- (12) Sanz Y, Collado MC, Dalmau J. Probióticos: criterios de calidad y orientaciones para el consumo. Acta Pediátrica Española. 2003; 61: 476-482.
- (13) Boyle RJ, Robins-Browne RM, Tang MLK. Probiotic use in clinical practice: what are the risks?. American Journal of Clinical Nutrition. 2006; 83:1256-1264. DOI: https://doi.org/10.1093/ajcn/83.6.1256
- (14) Nutrient Requirement of Domestic Animals. Nutrient Requirements of Swine. National Academic Press.Washington, District of Columbia.
- (15) Neogen. Salmonella Shigella Agar (7152). Acumedia, 2011.Disponible en: http:// www.neogen.com/Acumedia/pdf/ProdInfo/7152_PI.pdf.
- (16) Petrifilm 3M. Placas para recuento de E. coli/Coliform, 2010. Disponible en http:// multimedia.3m.com/mws/media/701951O/product-instructions-3m-petrifilm-e-coli-coliform-count-plate.pdf.
- (17) Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. InfoStat versión 1.0, 2012.
- (18) Duncan DB. Multiple range and multiple F tests. Biometrics. 1955, 11:1. DOI: http://dx.doi.org/10.2307/3001478. DOI: https://doi.org/10.2307/3001478
- (19) ComparPro versión 1. Font H, Noda A, Torres V, Herrera M, Lizazo D, Sarduy L, Rodríguez L. Instituto de Ciencia Animal, Dpto. de Biomatemática, Cuba. 2007.
- (20) Bomba A, Nemcová R, Mudroňová D, Guba P. The possibilities of potentiating the efficacy of probiotics. Trends Food Science & Technology. 2002; 13: 121-126. DOI: http://dx.doi.org/10.1016/S0924-2244(02)00129-2. DOI: https://doi.org/10.1016/S0924-2244(02)00129-2
- (21) García-Hernández Y, Pérez-Sánchez T, Boucourt R, Balcázar JL, Nicoli JR, Moreira-Silva J, Rodríguez Z, Fuertes H, Nuñez O, Albelo N, Halaihel N. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science. 2016; 108:125-132. DOI: http://dx.doi.org/10.1016/j.rvsc.2016.08.009. DOI: https://doi.org/10.1016/j.rvsc.2016.08.009
- (22) Bach S, Talarek N, Andrieu T, Vierfond J, Mettey Y. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnology. 2003; 21: 1075-1081. DOI: http://dx.doi.org/10.1038/nbt855. DOI: https://doi.org/10.1038/nbt855
- (23) Moslehi-Jenabian S, Lindegaard L, Jespersen L. Review: beneficial effects of probiotic and food borne yeasts on human health. Nutrients II. 2010; 449-473. DOI: http://dx.doi.org/10.3390/nu2040449. DOI: https://doi.org/10.3390/nu2040449
- (24) Giang H, Viet T, Ogle B, Lindberg J. Effects of supplementation of probiotics on the performance, nutrient digestibility and fecal microflora in growing-finishing pigs. Asian-Aust. Journal of Animal Science. 2011; 24: 655-661. DOI: https://doi.org/10.5713/ajas.2011.10238
- (25) Álvarez-Martín P, Flórez AB, Hernández-Barranco A, Mayo B. Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control. 2008; 19: 62-70. DOI: http://dx.doi.org/10.1016/j.foodcont.2007.02.003. DOI: https://doi.org/10.1016/j.foodcont.2007.02.003
- (26) Wang Y, Cho J, Chen Y, Yoo J, Huang Y, Kim H, Kim I. The effect of probiotic BioPlus 2B® on growth performance, dry matter and nitrogen digestibility and slurry noxious gas emission in growing pigs. Livestock Science. 2009; 120: 35-42. DOI: http://dx.doi.org/10.1016/j.livsci.2008.04.018. DOI: https://doi.org/10.1016/j.livsci.2008.04.018
- (27) Milián G. Obtención de cultivos de Bacillus spp. y sus endosporas. Evaluación de su actividad probiótica en pollos (Gallus gallus domesticus). Tesis presentada para la opción de Doctor en Ciencias Veterinarias. Instituto de Ciencia Animal. La Habana, Cuba. 2009. 98 p.
- (28) Vervaeke I, Decuypere J, Dierick N, Henderickx H. Quantitative in vitro evaluation of the energy metabolism influenced by virginiamycin and spiramycin used as growth promoters in pig nutrition. Journal of Animal. Science. 1979; 49: 846-856. DOI: http://dx.doi.org/10.2527/jas1979.493846x. DOI: https://doi.org/10.2527/jas1979.493846x
- (29) Ravindran V, Kornegay E, Webb K. Effects of fiber and virginiamycin on nutrient absorption, nutrient retention and rate of passage in growing swine. Journal of Animal Science. 1984; 59: 400-408. DOI: http://dx.doi.org/10.2527/jas1984.592400x. DOI: https://doi.org/10.2527/jas1984.592400x
- (30) Cromwell G. Antimicrobial and promicrobial agents. In Swine Nutrition. 2nd ed. A. J. Lewis and L. L. Southern, ed. CRC Press, Boca Raton, FL, 2001. DOI: https://doi.org/10.1201/9781420041842.ch18
- (31) Kass M, Van Soest P, Pond W, Lewis B, Mc-Dowell R. Utilization of dietary fiber from alfalfa by growing swine. I. Apparent digestibility of diet components in specific segments of the gastrointestinal tract. Journal of Animal Science. 1980; 50: 175-191. DOI: http://dx.doi.org/10.2527/jas1980.501175x. DOI: https://doi.org/10.2527/jas1980.501175x
- (32) Kim B, Lindemann M, Cromwell M, Balfagon A, Agudelo J. The correlation between passage rate of digesta and dry matter digestibility in various stages of swine. Livestock Science. 2007; 109: 81-84. DOI: http://dx.doi.org/10.1016/j.livsci.2007.01.082. DOI: https://doi.org/10.1016/j.livsci.2007.01.082