Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico

Resumen

Este trabajo presenta el uso de inteligencia artificial en flujos multifásicos, implementando una red neuronal artificial de perceptrón multicapa con retropropagación, y utilizando la función de activación tangente sigmoidea, para generar un modelo predictivo capaz de obtener la fracción volumétrica de un flujo bifásico compuesto por agua y aceite mineral en una tubería horizontal de 12 m. La red neuronal artificial se desarrolla a partir de una capa de entrada, formada por el diferencial de presión en la línea y las velocidades superficiales de los fluidos de trabajo, además, tiene dos capas ocultas y una capa de salida, que está formada por las fracciones volumétricas de los fluidos. El modelo predictivo de mejor rendimiento muestra un error medio porcentual absoluto del 3,07 % y un coeficiente de determinación R2 de 0,985 utilizando 15 neuronas en las dos capas ocultas de la red neuronal. Los 56 datos experimentales utilizados en el estudio se obtuvieron en el laboratorio LEMI EESC-USP (Brasil).

Palabras clave

Flujo multifásico, Fracción volumétrica, Red Neuronal Artificial, Presión diferencial, Velocidad superficial

PDF

Citas

  1. M. Süßer, “Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance and Ap- plications,” Cryogenics, vol. 40, no. 6, p. 421, jan 2000. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0011227500000515 DOI: https://doi.org/10.1016/S0011-2275(00)00051-5
  2. F.Romero,L.Velásquez,andE.Chica,“Consideraciones de diseño de una turbina Michell-Banki,” Revista UIS Ingenierías, vol. 20, no. 1, pp. 23–46, oct 2020. [Online]. Available: https://revistas.uis.edu.co/index.php/ revistauisingenierias/article/view/10906/11025 DOI: https://doi.org/10.18273/revuin.v20n1-2021003
  3. D. M. Rocha, C. H. de Carvalho, V. Estevam, and O. M. Rodriguez, “Effects of water and gas injection and viscosity on volumetric fraction, pressure gradient and phase inversion in upward-vertical three-phase pipe flow,” Journal of Petroleum Science and Engineering, vol. 157, no. March, pp. 519–529, aug 2017. [Online]. Available: http://dx.doi.org/10.1016/j.petrol. 2017.07.055https://linkinghub.elsevier.com/retrieve/pii/ S0920410517306010 DOI: https://doi.org/10.1016/j.petrol.2017.07.055
  4. V. S. Chalgeri and J. H. Jeong, “Flow regime identification and classification based on void fraction and differential pressure of vertical two-phase flow in rectangular channel,” International Journal of Heat and Mass Transfer, vol. 132, pp. 802–816, apr 2019. [Online]. Available: https://doi.org/10.1016/j.ijheatmasstransfer. 2018.12.015https://linkinghub.elsevier.com/retrieve/pii/ S0017931018344016 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.015
  5. M. M. Hernández-Cely and C. M. Ruiz-Diaz, “Estudio de los fluidos aceite-agua a través del sensor basado en la permitividad eléctrica del patrón de fluido,” Revista UIS Ingenierías, vol. 19, no. 3, pp. 177–186, apr 2020. [Online]. Available: https://revistas.uis.edu.co/index.php/ revistauisingenierias/article/view/10570/10686 DOI: https://doi.org/10.18273/revuin.v19n3-2020017
  6. Y. Mi, M. Ishii, and L. Tsoukalas, “Vertical two-phase flow identification using advanced instrumentation and neural networks,” Nuclear Engineering and Design, vol. 184, no. 2-3, pp. 409–420, aug 1998. [Onli- ne]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S002954939800212X DOI: https://doi.org/10.1016/S0029-5493(98)00212-X
  7. J. E. Juliá, Y. Liu, S. Paranjape, and M. Ishii, “Upward vertical two-phase flow local flow regime identification using neural network techniques,” Nuclear Engineering and Design, vol. 238, no. 1, pp. 156–169, jan 2008. [Online]. Available: https://linkinghub.elsevier.com/ DOI: https://doi.org/10.1016/j.nucengdes.2007.05.005
  8. retrieve/pii/S0029549307003822
  9. C. Tan, F. Dong, and M. Wu, “Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction,” Flow Measurement and Instrumentation, vol. 18, no. 5-6, pp. 255–261, oct 2007. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0955598607000660 DOI: https://doi.org/10.1016/j.flowmeasinst.2007.08.003
  10. E. Rosa, R. Salgado, T. Ohishi, and N. Mastelari, “Performance comparison of artificial neural networks and expert systems applied to flow pattern identification in vertical ascendant gas-liquid flows,” International
  11. Journal of Multiphase Flow, vol. 36, no. 9, pp. 738–754, sep 2010. [Online]. Available: http://dx.doi.org/10.1016/j. ijmultiphaseflow.2010.05.001https://linkinghub.elsevier. com/retrieve/pii/S0301932210000911 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2010.05.001
  12. R.Banasiak,R.Wajman,T.Jaworski,P.Fiderek,H.Fidos, J. Nowakowski, and D. Sankowski, “Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classifi- cation,” International Journal of Multiphase Flow, vol. 58, pp. 1–14, jan 2014. [Online]. Available: https://linkinghub. elsevier.com/retrieve/pii/S0301932213001080 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2013.07.003
  13. H. Shaban and S. Tavoularis, “Identification of flow regime in vertical upward air-water pipe flow using diffe- rential pressure signals and elastic maps,” International Journal of Multiphase Flow, vol. 61, pp. 62–72, may 2014. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0301932214000159 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.01.009
  14. ——,“Measurementofgasandliquidflowratesintwo- phase pipe flows by the application of machine learning techniques to differential pressure signals,” International Journal of Multiphase Flow, vol. 67, pp. 106–117, dec 2014. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0301932214001608 DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2014.08.012
  15. L. Wang, J. Liu, Y. Yan, X. Wang, and T. Wang, “Gas- Liquid Two-Phase Flow Measurement Using Coriolis Flowmeters Incorporating Artificial Neural Network, Support Vector Machine, and Genetic Programming Algorithms,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 5, pp. 852–868, may 2017. [Online]. Available: http://ieeexplore.ieee.org/document/ 7790803/ DOI: https://doi.org/10.1109/TIM.2016.2634630
  16. A. van der Spek and A. Thomas, “Neural-Net Identi- fication of Flow Regime With Band Spectra of Flow- Generated Sound,” SPE Reservoir Evaluation & Enginee- ring, vol. 2, no. 06, pp. 489–498, dec 1999. [Online]. Avai- DOI: https://doi.org/10.2118/59067-PA
  17. lable: https://onepetro.org/REE/article/2/06/489/109008/ Neural-Net-Identification-of-Flow-Regime-With-Band
  18. S. Cai, H. Toral, J. Qiu, and J. S. Archer, “Neural network based objective flow regime identification in air-water two phase flow,” The Canadian Journal of Chemical Engineering, vol. 72, no. 3, pp. 440–445, jun 1994. [Online]. Available: http://doi.wiley.com/10.1002/ cjce.5450720308 DOI: https://doi.org/10.1002/cjce.5450720308
  19. R. Hanus, M. Zych, M. Kusy, M. Jaszczur, and L. Petryka, “Identification of liquid-gas flow regime in a pipeline using gamma-ray absorption technique and computational intelligence methods,” Flow Measurement and Instrumentation, vol. 60, no. February, pp. 17–23, apr 2018. [Online]. Available: https://linkinghub.elsevier.com/ retrieve/pii/S0955598617303667 DOI: https://doi.org/10.1016/j.flowmeasinst.2018.02.008
  20. C. Díaz, O. A. González-Estrada, and M. Cely, “Predictive Modeling of Holdup in Horizontal Wateroil Flow Using a Neural Network Approach,” in 14th WCCM-ECCOMAS Congress, no. January. Paris, Francia: CIMNE, 2021, pp. 11–15. [Online]. Available: https://www.scipedia.com/public/Diaz_et_al_2021a DOI: https://doi.org/10.23967/wccm-eccomas.2020.283
  21. M. Meribout, N. Al-Rawahi, A. Al-Naamany, A. Al- Bimani, K. Al-Busaidi, and A. Meribout, “Integration of impedance measurements with acoustic measu- rements for accurate two phase flow metering in case of high water-cut,” Flow Measurement and Instrumentation, vol. 21, no. 1, pp. 8–19, mar 2010. [On- line]. Available: https://linkinghub.elsevier.com/retrieve/ pii/S0955598609000405 DOI: https://doi.org/10.1016/j.flowmeasinst.2009.09.002
  22. R.Shirley,D.P.Chakrabarti,andG.Das,“Artificialneural networks in liquid-liquid two-phase flow,” Chemical Engi- neering Communications, vol. 199, no. 12, pp. 1520–1542, dec 2012. [Online]. Available: http://www.tandfonline. com/doi/abs/10.1080/00986445.2012.682323 DOI: https://doi.org/10.1080/00986445.2012.682323
  23. R. H. Ruschel, Proposição de modelo de fluxo de desliza- mento para escoamento líquido-líquido horizontal. Cam- pinas, Brasil: Universidade Estadual de Campinas, 2020.
  24. E. Jorjani, S. Chehreh Chelgani, and S. Mesroghli, “Application of artificial neural networks to pre- dict chemical desulfurization of Tabas coal,” Fuel, vol. 87, no. 12, pp. 2727–2734, sep 2008. [Onli- ne]. Available: https://linkinghub.elsevier.com/retrieve/pii/ DOI: https://doi.org/10.1016/j.fuel.2008.01.029
  25. S0016236108000409
  26. H. M. Al-Rikabi, M. A. Al-Ja’afari, A. H. Ali, and S. H. Abdulwahed, “Generic model implementation of deep neural network activation functions using GWO- optimized SCPWL model on FPGA,” Microprocessors and Microsystems, vol. 77, p. 103141, sep 2020. [Onli- ne]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S0141933120303082 DOI: https://doi.org/10.1016/j.micpro.2020.103141

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

También puede {advancedSearchLink} para este artículo.