Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Modelo Oculto De Markov La Piedra Angular De La Proteómica Moderna

Resumen

El modelo oculto de Markov se ha convertido en una de las herramientas más utilizadas en el análisis de secuencias biológicas, ya que proporcionan un sólido marco matemático para modelar y analizar secuencias biológicas. En este documento, presentamos una revisión del concepto básico de los HMM y cómo es posible usar de manera efectiva el HMM para la representación de secuencias biológicas en la identificación de secuencias de proteínas evolutivamente distantes.

Palabras clave

Modelo oculto de Markov (HMM), bioinformática, dominios, proteínas.

PDF

Citas

  1. B. Aslam, M. Basit, M. A. Nisar, M. Khurshid, and M. H. Rasool, “Proteomics: Technologies and their applications,” Journal of Chromatographic Science, vol. 55, no. 2. 2017. doi: 10.1093/chromsci/bmw167.
  2. D. R. Bentley, “The human genome project - An overview,” Medicinal Research Reviews, vol. 20, no. 3. 2000. doi: 10.1002/(sici)1098-1128(200005)20:3<189::aid-med2>3.0.co;2-%23.
  3. S. P. Melo et al., “Transcription of meiotic-like-pathway genes in Giardia intestinalis,” Mem Inst Oswaldo Cruz, vol. 103, no. 4, 2008, doi: 10.1590/S0074-02762008000400006.
  4. I. C. Castellanos, E. P. Calvo, and M. Wasserman, “A new gene inventory of the ubiquitin and ubiquitin-like conjugation pathways in giardia intestinalis,” Mem Inst Oswaldo Cruz, vol. 115, 2020, doi: 10.1590/0074-02760190242.
  5. D. I. Resnicow, J. C. Deacon, H. M. Warrick, J. A. Spudich, and L. A. Leinwand, “Functional diversity among a family of human skeletal muscle myosin motors,” Proc Natl Acad Sci U S A, vol. 107, no. 3, 2010, doi: 10.1073/pnas.0913527107.
  6. P. C. Hernández, L. Morales, I. C. Castellanos, M. Wasserman, and J. Chaparro-Olaya, “Myosin B of Plasmodium falciparum (PfMyoB): in silico prediction of its three-dimensional structure and its possible interaction with MTIP,” Parasitol Res, vol. 116, no. 4, 2017, doi: 10.1007/s00436-017-5417-y.
  7. S. Yoodee and V. Thongboonkerd, “Bioinformatics and computational analyses of kidney stone modulatory proteins lead to solid experimental evidence and therapeutic potential,” Biomedicine & Pharmacotherapy, vol. 159, p. 114217, 2023.
  8. T. F. Smith and M. S. Waterman, “Identification of common molecular subsequences,” J Mol Biol, vol. 147, no. 1, pp. 195–197, 1981.
  9. G. Myers, “What’s Behind Blast,” 2013. doi: 10.1007/978-1-4471-5298-9_1.
  10. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” J Mol Biol, vol. 215, no. 3, 1990, doi: 10.1016/S0022-2836(05)80360-2.
  11. R. Giegerich, “A systematic approach to dynamic programming in bioinformatics,” Bioinformatics, vol. 16, no. 8. 2000. doi: 10.1093/bioinformatics/16.8.665.
  12. ncbi, “Entries for the BLOSUM62 matrix at a scale of ln(2)/2.0,” ftp://ftp.ncbi.nlm.nih.gov/blast/matrices, Feb. 22, 2023.
  13. M. P. Styczynski, K. L. Jensen, I. Rigoutsos, and G. Stephanopoulos, “BLOSUM62 miscalculations improve search performance,” Nature Biotechnology, vol. 26, no. 3. 2008. doi: 10.1038/nbt0308-274.
  14. S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from protein blocks,” Proc Natl Acad Sci U S A, vol. 89, no. 22, 1992, doi: 10.1073/pnas.89.22.10915.
  15. S. F. Altschul et al., “Gapped BLAST and PSI-BLAST: A new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17. 1997. doi: 10.1093/nar/25.17.3389.
  16. A. A. Markov, “Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga,” Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, vol. 2-ya seriy, 1906.
  17. L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77, no. 2, 1989, doi: 10.1109/5.18626.
  18. A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler, “Hidden Markov Models in computational biology applications to protein modeling,” J Mol Biol, vol. 235, no. 5, 1994, doi: 10.1006/jmbi.1994.1104.
  19. M. Gribskov, R. Lothy, and D. Eisenberg, “Profile analysis,” Methods Enzymol, vol. 183, no. C, 1990, doi: 10.1016/0076-6879(90)83011-W.
  20. G. D. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, no. 3, 1973, doi: 10.1109/PROC.1973.9030.
  21. R. D. Finn et al., “Pfam: clans, web tools and services.,” Nucleic Acids Res, vol. 34, no. Database issue, 2006, doi: 10.1093/nar/gkj149.
  22. S. El-Gebali et al., “The Pfam protein families database in 2019,” Nucleic Acids Res, vol. 47, no. D1, 2019, doi: 10.1093/nar/gky995.
  23. J. Mistry et al., “Pfam: The protein families database in 2021,” Nucleic Acids Res, vol. 49, no. D1, 2021, doi: 10.1093/nar/gkaa913.
  24. S. R. Eddy, “What is a hidden Markov model?,” Nature Biotechnology, vol. 22, no. 10. 2004. doi: 10.1038/nbt1004-1315.
  25. S. C. Potter, A. Luciani, S. R. Eddy, Y. Park, R. Lopez, and R. D. Finn, “HMMER web server: 2018 update,” Nucleic Acids Res, vol. 46, no. W1, 2018, doi: 10.1093/nar/gky448.
  26. K. Karplus, C. Barrett, and R. Hughey, “Hidden Markov models for detecting remote protein homologies,” Bioinformatics, vol. 14, no. 10, 1998, doi: 10.1093/bioinformatics/14.10.846.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.