Skip to main navigation menu Skip to main content Skip to site footer

A Leslie-Gower type predation model with hyperbolic functional response and cooperation between predators

Abstract

In this paper, we propose a Leslie-Gower type predator-prey model with hunting cooperation between
predators. This interaction is described by a nonlinear, autonomous, Kolmogorov-type system of ordinary
differential equations with a hyperbolic functional response. The existence of a positively invariant region,
the delimitation of the trajectories, the existence of a single positive equilibrium point, and the presence
of a heteroclinic curve were established. Considering a topologically equivalent system, the nature of the
equilibrium (0,0) is examined. Moreover, the basin of attraction of (0,0) and the stability of all nonnegative
points are analyzed. Furthermore, the solutions are very sensitive to the initial conditions, since there is a
separatrix curve that divides the trajectories. Finally, numerical simulations are performed to validate the
analytical results.

Keywords

Bifurcación, cooperación, estabilidad, Leslie-Gower, separatriz


Author Biography

Francisco Javier Reyes Bahamon

FRANCISCO JAVIER REYES BAHAMÓN

FECHA DE NACIMIENTO                      05 de Febrero de 1990

LUGAR DE NACIMIENTO                      Neiva – Huila

CÉDULA DE CIUDADANIA                    1.075.242.683 de Neiva

ESTADO CIVIL                                    Soltero

OCUPACIÓN                                       Docente de Matemáticas

fjreyesb@unal.edu.co

CALLE 70A  No. 25-137 TEL: 3219004454

NEIVA– HUILA

Licenciado en Matemáticas de la Universidad Surcolombiana, Maestría en Matemática Aplicada de la Universidad Nacional de Colombia, Estudiante de doctorado en Matemáticas de la Universidad Nacional de Colombia sede Manizales.


References

  1. P.J. Wangersky, “Lotka-Volterra population models”, Annual Review of Ecology and Systematics, vol. 9, pp. 189-218, Nov. 1978.
  2. https://doi.org/10.1146/annurev.es.09.110178.001201
  3. V. Volterra, “Variazioni e fluttuazioni del numero de individui in specie animali convivent”, Memorie della R. Accademia dei Lincei, vol. 2, pp. 31-113, 1926.
  4. P.H. Leslie, J.C. Gower, “The properties of a stochastic model for the predator-prey type of interaction between two species”,
  5. Biometrika, vol. 47, no. 3-4, pp. 219-234, Dec. 1960. https://doi.org/10.1093/biomet/47.3-4.219
  6. R.M. May, “Stability and complexity in model ecosystems, in: Monographs in population biology”, 6, Princeton university press, Princeton, Nueva Jersey, 1974
  7. F. Dumortier, J. Llibre, J. C. Artés, “Qualitative theory of planar differential systems”, Universitext, Springer, Berlin, Heidelberg, 2006.
  8. S. Hsu, T. Huang, “A global stability for a class of predator-prey systems”, SIAM Journal on Applied Mathematics, vol. 55, no. 3, pp. 763-783, Jun. 1995. https://doi.org/10.1137/S003613999325320
  9. P. Turchin,“Complex population dynamics: A theoretical/empirical synthesis”, Monographs in Population Biology 35, Princeton: Princeton University Press, Nueva Jersey, 2003
  10. E. González, P.C. Tintinago, A. Rojas, “A LeslieGower-type predator-prey model with sigmoid functional response”, International Journal of Computer Mathematics, vol. 92, no. 9, pp. 1895-1909, Apr. 2014. https://doi.org/10.1080/00207160.2014.889818
  11. F.J. Reyes, S. Casanova, E. González, “Dynamics of a Leslie-Gower type predation model with non-monotonic functional response and weak Allee effect on prey”, Selecciones Matemática, vol. 10, no. 2, pp. 310-323, Dec. 2023. https://doi.org/10.17268/sel.mat.2023.02.07
  12. E. Saez, E. González, “Dynamics of a predatorprey model”, SIAM Journal on Applied Mathematics, vol. 59, no. 5, pp. 1867-1878, Aug. 1999. https://doi.org/10.1137/S0036139997318457
  13. E. González, A. Mosquera, P. Tintinago, A. Rojas, “Bifurcations in a Leslie-Gower type predator-prey model with a rational non-monotonic functional response”, Mathematical Modelling and Analysis, vol. 27, no. 3, pp. 510-532, Aug. 2022.
  14. https://doi.org/10.3846/mma.2022.15528
  15. B.W. Dale, L.G. Adams, R.T Bowyer, “Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem”, Journal of Animal Ecology, vol. 63, no. 3, pp. 644-652, Jul. 1994. https://doi.org/10.2307/5230
  16. A. Gasull, R. Kooij, J. Torregrosa, “Limit cycles in the Holling-Tanner model”, Publicacions Matemátiques, vol. 41, no. 1, pp. 149-167, Jan. 1997. https://doi.org/10.5565/PUBLMAT_41197_09
  17. M. Alves, M. Hilker, “Hunting cooperation and Allee effects in predators”, Journal of Theoretical Biology, vol. 419, pp. 13-22, Apr. 2017.
  18. https://doi.org/10.1016/j.jtbi.2017.02.002
  19. P. Ye, D. Wu, “Impacts of strong Allee effect and hunting cooperation for a Leslie-Gower predator-prey system”, Chinese Journal of Physics, vol. 68, pp. 49-64, Dec. 2020. https://doi.org/10.1016/j.cjph.2020.07.021
  20. E. González, A. Rojas, “Collaboration between predators and weak Allee effect in prey. Consequences on the dynamics of a predation model”, Selecciones Matemáticas, vol. 9, no. 1, pp. 173-183, Jul. 2022. https://doi.org/10.17268/sel.mat.2022.01.15
  21. L. Berec, “Impacts of foraging facilitation among predators on predator-prey dynamics”, Bulletin of Mathematical Biology, vol. 72, pp. 94-121, Aug. 2009. https://doi.org/10.1007/s11538-009-9439-1
  22. D.W. Macdonald, “The ecology of carnivore social behaviour”, Nature, vol. 301, pp. 379-384, Feb. 1983. https://doi.org/10.1038/301379a0
  23. R. Heinsohn, C. Packer, “Complex cooperative strategies in group-territorial African lions, Science, vol. 269, pp. 1260-1262, Sep. 1995.
  24. https://doi.org/10.1126/science.7652573
  25. S. Creel, N.M. Creel, “Communal hunting and pack size in African wild dogs, Lycaon pictus”, Animal Behaviour, vol. 50, no. 5, pp. 1325-1339, Mar. 1995. https://doi.org/10.1016/0003-3472(95)80048-4
  26. R. Bshary, A. Hohner, K. Ait-el-Djoudi, H. Fricke, “Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea”, Plos Biology, vol. 4, no. 12, e431, Dec. 2006. https://doi.org/10.1371/journal.pbio.0040431
  27. H.I. Freedman, “Deterministic mathematical models in population ecology”, Monographs and textbooks in pure and applied mathematics, Dekker, New York, 1980
  28. C. Chicone, “Ordinary differential equations with applications”, Texts in Applied Mathematics, Springer, New York, 2008.
  29. G. Birkhoff, G.S. Rota, “Ordinary differential equations”, John Wiley Sons, 4th edn, New York, 1989.
  30. L. Perko, “Differential equations and dynamical systems”, Texts in Applied Mathematics. Springer, New York, 2012.
  31. J. Guckenheimer, P. Holmes, “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”,
  32. Springer-Verlag, New York, 1983.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.