Skip to main navigation menu Skip to main content Skip to site footer

Common Reactions of Furfural to scalable processes of Residual Biomass

Abstract

Energy and the environment will always play key roles in society. The climate emergency cannot be ruled out to enable the transition for a clean energy future. Currently, non-renewable energy resources are declining, therefore is important to continuously explore renewable resources. Biomass is a renewable resource that can be applied to reduce climate changes and to accomplhish emission policies. Cellulose is the most abundant type of biomass worldwide, which can be transformed into biofuels and potential building block platform molecules (e.g furfural) throughout biological or chemical methods. Furfural can be synthetized from cellulose using hydrolysis and dehydration reactions. Furfural has a furan ring and carbonyl functional group which makes it an important intermediary to produce higher value-added molecules at  industrial level. These molecules include gasoline, diesel and jet fuel. However, furfural can also be transformed by hydrogenation, oxidation, decarboxylation and condensation reactions. The selective hydrogenation of furfural produces furfuryl alcohol, an important industrial compound, which is widely employed in the production of resins, fibers, and is considered an essential product for pharmaceutical applications. On the other hand, the oxidation of furfural produces furoic acid which is appliedin the agrochemical industry, where it is commonly transformed to furoyl chloride which is finally  used in the production of drugs and insecticides. The oxidation and reduction of furfural can carry out through heterogeneous and homogeneous catalysis, and biocatalysis.  Selectivity is an important issue in furfural hydrogenation and oxidation reactions since different products can be obtained by using monometallic or bimetallic catalysts and/or different catalyst supports. In biocatalysis approach, different enzymes, complete cells, tools of modern biotechnology, DNA sequencing, regulation of metabolic networks, overexpression of genes that encode enzymes of interest and optimization of the cellular properties of the microorganism are used. Herein, a review on the current status of furfuryl alcohol and furoic acid production from furfural by heterogeneous catalysis and biocatalysis has been studied. The stability, selectivity and activity of catalystsalong with the different furfural oxidation and reduction conditions have been pointed out. Additionally, the main enzymes, microorganisms and mechanism involved in the furfural degradation process have also been discussed.

Keywords

Furfural, Residual Biomass

PDF (Español)

References

  1. UNFCCC, Adoption of the Paris Agreement. United Nations Framework Convention on Climate Change. 2015.
  2. R. B. Jackson et al., “Warning signs for stabilizing global CO2 emissions,” Environ. Res. Lett., vol. 12, no. 11, p. 110204, 2017, doi: 10.1088/1748-9326/aa9662. DOI: https://doi.org/10.1088/1748-9326/aa9662
  3. S. Nabernegg, B. Bednar-Friedl, P. Muñoz, M. Titz, and J. Vogel, “National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains,” Ecol. Econ, vol. 158, pp. 146–157, 2019, doi: 10.1016/j.ecolecon.2018.12.006. DOI: https://doi.org/10.1016/j.ecolecon.2018.12.006
  4. S. Hansen, A. Mirkouei, and L. A. Diaz, “A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels,” Renew. Sustain. Energy Rev., vol. 118, no. June 2019, p. 109548, 2020, doi: 10.1016/j.rser.2019.109548. DOI: https://doi.org/10.1016/j.rser.2019.109548
  5. REN21, “Renewables 2018 Global Status Report,” Paris, 2018.
  6. P. C. Torres-Mayanga et al., “Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review,” Biomass and Bioenergy, vol. 130, no. June, p. 105397, 2019, doi: 10.1016/j.biombioe.2019.105397. DOI: https://doi.org/10.1016/j.biombioe.2019.105397
  7. I. E. Agency, “Market Report Series: Oil 2018. Analysis and forecasts to 2023,” Paris, 2018.
  8. L. M. Esteves et al., “Effect of support on selective 5-hydroxymethylfurfural hydrogenation towards 2,5-dimethylfuran over copper catalysts,” Fuel, vol. 270, no. January, p. 117524, 2020, doi: 10.1016/j.fuel.2020.117524. DOI: https://doi.org/10.1016/j.fuel.2020.117524
  9. A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chem., vol. 36, no. 207890, pp. 2729–2747, 2019, doi: 10.1039/c7gc01078h. DOI: https://doi.org/10.1039/C7GC01078H
  10. X. Li, P. Jia, and T. Wang, “Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals,” ACS Catal., vol. 6, no. 11, pp. 7621–7640, 2016, doi: 10.1021/acscatal.6b01838.
  11. J. Ma et al., “Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels,” J. Energy Chem, vol. 36, pp. 74–86, 2019, doi: 10.1016/j.jechem.2019.04.026. DOI: https://doi.org/10.1016/j.jechem.2019.04.026
  12. Y. Luo et al., “The production of furfural directly from hemicellulose in lignocellulosic biomass: A review,” Catal. Today, vol. 319, pp. 14–24, 2019, doi: 10.1016/j.cattod.2018.06.042. DOI: https://doi.org/10.1016/j.cattod.2018.06.042
  13. A. Bohre, S. Dutta, B. Saha, and M. M. Abu-Omar, “Upgrading Furfurals to Drop-in Biofuels: An Overview,” ACS Sustain. Chem. Eng., vol. 3, no. 7, pp. 1263–1277, 2015, doi: 10.1021/acssuschemeng.5b00271. DOI: https://doi.org/10.1021/acssuschemeng.5b00271
  14. M. Kabbour and R. Luque, “Furfural as a platform chemical: From production to applications,” in Biomass, Biofuels, Biochemicals, Elsevier B.V., Ed. 2020, pp. 283–297. DOI: https://doi.org/10.1016/B978-0-444-64307-0.00010-X
  15. R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, “Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 1144–1189, 2016, doi: 10.1039/C5EE02666K. DOI: https://doi.org/10.1039/C5EE02666K
  16. P. Rachamontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, and K. Rattanaporn, “Furfural: A Sustainable Platform Chemical and Fuel,” Appl. Sci. Eng. Prog., vol. 13, no. 1, pp. 3–10, 2020, doi: 10.14416/j.asep.2020.01.003. DOI: https://doi.org/10.14416/j.asep.2020.01.003
  17. M. Dashtban, A. Gilbert, and P. Fatehi, “Production of furfural: Overview and challenges,” J-for, vol. 2, no. 4, pp. 44–53, 2012.
  18. H. J. Brownlee and C. S. Miner, “Industrial Development of Furfural,” Ind. Eng. Chem., vol. 40, no. 2, pp. 201–204, Feb. 1948, doi: 10.1021/ie50458a005. DOI: https://doi.org/10.1021/ie50458a005
  19. S. G. Wettstein, D. Martin Alonso, E. I. Gürbüz, and J. A. Dumesic, “A roadmap for conversion of lignocellulosic biomass to chemicals and fuels,” Curr. Opin. Chem. Eng., vol. 1, no. 3, pp. 218–224, 2012, doi: 10.1016/j.coche.2012.04.002. DOI: https://doi.org/10.1016/j.coche.2012.04.002
  20. R. Karinen, K. Vilonen, and M. Niemelä, “Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural,” ChemSusChem, vol. 4, no. 8, pp. 1002–1016, 2011, doi: 10.1002/cssc.201000375. DOI: https://doi.org/10.1002/cssc.201000375
  21. C. M. Cai, T. Zhang, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” no. April, 2013, doi: 10.1002/jctb.4168. DOI: https://doi.org/10.1002/jctb.4168
  22. M and Markets, “Furfural Market,” 2020.
  23. T. M. Research, “Furfural Derivatives Market,” 2020.
  24. K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renew. Sustain. Energy Rev., vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003. DOI: https://doi.org/10.1016/j.rser.2014.07.003
  25. Y. Wang, D. Zhao, D. Rodríguez-Padrón, and C. Len, “Recent advances in catalytic hydrogenation of furfural,” Catalyst, vol. 9, pp. 1–33, 2019, doi: 10.3390/catal9100796. DOI: https://doi.org/10.3390/catal9100796
  26. J. Long, W. Zhao, H. Li, and S. Yang, “Furfural as a renewable chemical platform for furfuryl alcohol production,” in Biomass, Biofuels, Biochemicals, 2020, pp. 299–322. DOI: https://doi.org/10.1016/B978-0-444-64307-0.00011-1
  27. B. H. Wojcik, “Catalytic hydrogenationof furan compounds,” Ind. Eng. Chem. Res., vol. 40, no. 2, pp. 210–215, 1948. DOI: https://doi.org/10.1021/ie50458a007
  28. R. López-Asensio, J. A. Cecilia, C. P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, and P. Maireles-Torres, “Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas,” Appl. Catal. A Gen., vol. 556, no. November 2017, pp. 1–9, 2018, doi: 10.1016/j.apcata.2018.02.022. DOI: https://doi.org/10.1016/j.apcata.2018.02.022
  29. Á. O. Driscoll, J. J. Leahy, and T. Curtin, “The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol,” Catal. Today, 2016, doi: 10.1016/j.cattod.2016.06.013. DOI: https://doi.org/10.1016/j.cattod.2016.06.013
  30. M. Douthwaite et al., “The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2,” Catal. Sci. Technol., vol. 7, no. 22, pp. 5284–5293, 2017, doi: 10.1039/c7cy01025g.
  31. K. J. Zeitsch, “Furoic acid,” in Sugar Series, vol. 13, 2000, pp. 159–163. DOI: https://doi.org/10.1016/S0167-7675(00)80019-6
  32. N. K. Gupta, A. Fukuoka, and K. Nakajima, “Metal-free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst,” Sustain. Chem. Eng., 2018, doi: 10.1021/acssuschemeng.7b03681. DOI: https://doi.org/10.1021/acssuschemeng.7b03681
  33. C. D. Hurd, J. W. Garrett, and E. N. Osborne, “Furan Reactions. IV. Furoic Acid from Furfural,” J. Am. Chem. Soc., vol. 55, no. 3, pp. 1082–1084, 1933, doi: 10.1021/ja01330a032. DOI: https://doi.org/10.1021/ja01330a032
  34. Q. Tian, D. Shi, and Y. Sha, “CuO and Ag2O/CuO catalyzed oxidation of aldehydes to the corresponding carboxylic acids by molecular oxygen,” Molecules, vol. 13, no. 4, pp. 948–957, 2008, doi: 10.3390/molecules13040948. DOI: https://doi.org/10.3390/molecules13040948
  35. P. Verdeguer, N. Merat, and A. Gaset, “Lead/platinum on charcoal as catalyst for oxidation of furfural. Effect of main parameters,” Appl. Catal. A, Gen., vol. 112, no. 1, pp. 1–11, 1994, doi: 10.1016/0926-860X(94)80133-9. DOI: https://doi.org/10.1016/0926-860X(94)80133-9
  36. B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhanga, and B. Han, “Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2,” Sustain. Chem. Eng., 2016, doi: 10.1039/C6GC03022J. DOI: https://doi.org/10.1039/C6GC03022J
  37. U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins, “Engineering the third wave of biocatalysis,” Nature, vol. 485, no. 7397, pp. 185–194, 2012, doi: 10.1038/nature11117. DOI: https://doi.org/10.1038/nature11117
  38. X. Li, P. Jia, and T. Wang, “Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals,” ACS Catal., 2016. DOI: https://doi.org/10.1021/acscatal.6b01838
  39. A. Pellis, E. Herrero Acero, V. Ferrario, D. Ribitsch, G. M. Guebitz, and L. Gardossi, “The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters,” Trends Biotechnol., vol. 34, no. 4, pp. 316–328, 2016, doi: 10.1016/j.tibtech.2015.12.009. DOI: https://doi.org/10.1016/j.tibtech.2015.12.009
  40. F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14,” Proc. Natl. Acad. Sci., vol. 107, no. 11, pp. 4919–4924, 2010, doi: 10.1073/pnas.0913039107. DOI: https://doi.org/10.1073/pnas.0913039107
  41. X. Wang, I. Khushk, Y. Xiao, Q. Gao, and J. Bao, “Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution,” Appl. Microbiol. Biotechnol., vol. 102, no. 1, pp. 377–388, 2018, doi: 10.1007/s00253-017-8627-4. DOI: https://doi.org/10.1007/s00253-017-8627-4
  42. R. V. Sharma, U. Das, R. Sammynaiken, and A. K. Dalai, “Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol,” Appl. Catal. A Gen., vol. 454, pp. 127–136, 2013, doi: 10.1016/j.apcata.2012.12.010. DOI: https://doi.org/10.1016/j.apcata.2012.12.010
  43. V. Ponec, “On the role of promoters in hydrogenations on metals; α , β-unsaturated aldehydes and ketones,” Appl. Catal. A Gen., vol. 149, no. 1, pp. 27–48, 1997, doi: 10.1016/S0926-860X(96)00250-5. DOI: https://doi.org/10.1016/S0926-860X(96)00250-5
  44. M. S. Ide, B. Hao, M. Neurock, and R. J. Davis, “Mechanistic insights on the hydrogenation of α,β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts,” ACS Catal., vol. 2, no. 4, pp. 671–683, 2012, doi: 10.1021/cs200567z. DOI: https://doi.org/10.1021/cs200567z
  45. H. Rojas, J. J. Martínez, and P. Reyes, “Kinetic behavior in the hydrogenation of furfural over Ir catalysts supported on TiO2,” DYNA, vol. 77, no. 163, pp. 151–159, 2010.
  46. R. F. Perez and M. A. Fraga, “Hemicellulose-derived chemicals: One-step production of furfuryl alcohol from xylose,” Green Chem., vol. 16, no. 8, pp. 3942–3950, 2014, doi: 10.1039/c4gc00398e. DOI: https://doi.org/10.1039/C4GC00398E
  47. S. Alijani et al., “Capping agent effect on pd-supported nanoparticles in the hydrogenation of furfural,” Catalysts, vol. 10, no. 1, pp. 1–16, 2019, doi: 10.3390/catal10010011. DOI: https://doi.org/10.3390/catal10010011
  48. G. S. Babu, V. Rekha, S. Francis, and N. Lingaiah, “Vapour Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol Over Cu–Cr–Zn Mixed Oxide Catalysts Prepared by Utilizing Gamma Radiation,” Catal. Lett., vol. 149, no. 10, pp. 2758–2766, 2019, doi: 10.1007/s10562-019-02815-6. DOI: https://doi.org/10.1007/s10562-019-02815-6
  49. X. Yang, H. Chen, Q. Meng, H. Zheng, Y. Zhu, and Y. W. Li, “Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation,” Catal. Sci. Technol., vol. 7, no. 23, pp. 5625–5634, 2017, doi: 10.1039/c7cy01284e. DOI: https://doi.org/10.1039/C7CY01284E
  50. X. Yang et al., “Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components,” Appl. Catal. A Gen., vol. 561, pp. 78–86, 2018, doi: 10.1016/j.apcata.2018.04.005. DOI: https://doi.org/10.1016/j.apcata.2018.04.005
  51. F. Tang, L. Wang, M. Dessie Walle, A. Mustapha, and Y. N. Liu, “An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural,” J. Catal., vol. 383, pp. 172–180, 2020, doi: 10.1016/j.jcat.2020.01.019. DOI: https://doi.org/10.1016/j.jcat.2020.01.019
  52. F. Li, S. Jiang, T. Zhu, Y. Wang, T. Huang, and C. Li, “Organodiphosphonate Metal‐Organic Frameworks Derived Ni‐P@C Catalyst for Hydrogenation of Furfural,” ChemistrySelect, vol. 5, no. 7, pp. 2271–2278, 2020, doi: 10.1002/slct.201902827. DOI: https://doi.org/10.1002/slct.201902827
  53. C. P. Jiménez-Gómez, C. Defilippi, J. A. Cecilia, R. Moreno-Tost, P. Maireles-Torres, and C. Giordano, “The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts,” Mol. Catal., vol. 487, pp. 1–12, 2020, doi: 10.1016/j.mcat.2020.110889. DOI: https://doi.org/10.1016/j.mcat.2020.110889
  54. L. Ruan et al., “A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures,” Mol. Catal., vol. 480, no. September 2019, p. 110639, 2020, doi: 10.1016/j.mcat.2019.110639. DOI: https://doi.org/10.1016/j.mcat.2019.110639
  55. P. Liu et al., “Kinetics of Furfural Hydrogenation over Bimetallic Overlayer Catalysts and the Effect of Oxygen Vacancy Concentration on Product Selectivity,” ChemCatChem, vol. 11, no. 14, pp. 3296–3306, 2019, doi: 10.1002/cctc.201900625. DOI: https://doi.org/10.1002/cctc.201900625
  56. M. J. Taylor et al., “Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions,” Appl. Catal. B Env., vol. 180, pp. 580–585, 2016, doi: 10.1016/j.apcatb.2015.07.006. DOI: https://doi.org/10.1016/j.apcatb.2015.07.006
  57. A. Jouve et al., “Furfural hydrogenation on modified niobia,” Appl. Sci., vol. 9, no. 11, pp. 1–14, 2019, doi: 10.3390/app9112287. DOI: https://doi.org/10.3390/app9112287
  58. A. B. Merlo, V. Vetere, J. F. Ruggera, and M. L. Casella, “Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase,” Catal. Commun., vol. 10, no. 13, pp. 1665–1669, 2009, doi: DOI: https://doi.org/10.1016/j.catcom.2009.05.005
  59. 1016/j.catcom.2009.05.005. DOI: https://doi.org/10.1088/1475-7516/2009/05/005
  60. A. B. Merlo, V. Vetere, J. M. Ramallo-López, F. G. Requejo, and M. L. Casella, “Liquid-phase furfural hydrogenation employing silica-supported PtSn and PtGe catalysts prepared using surface organometallic chemistry on metals techniques,” React. Kinet. Mech. Catal., vol. 104, no. 2, pp. 467–482, 2011, doi: 10.1007/s11144-011-0374-4. DOI: https://doi.org/10.1007/s11144-011-0374-4
  61. T. W. Goh, C.-K. Tsung, and W. Huang, “Spectroscopy Identification of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation,” ACS Appl. Mater. Interfaces, vol. 11, no. 26, pp. 23254–23260, Jul. 2019, doi: 10.1021/acsami.9b06229. DOI: https://doi.org/10.1021/acsami.9b06229
  62. F. Li, W. Zhu, S. Jiang, Y. Wang, H. Song, and C. Li, “Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/Carbon nanotubes catalysts,” Int. J. Hydrogen Energy, vol. 45, no. 3, pp. 1–10, 2019, doi: 10.1016/j.ijhydene.2019.11.139. DOI: https://doi.org/10.1016/j.ijhydene.2019.11.139
  63. L. J. Durndell, G. Zou, W. Shangguan, A. F. Lee, and K. Wilson, “Structure-Reactivity Relations in Ruthenium Catalysed Furfural Hydrogenation,” ChemCatChem, vol. 11, no. 16, pp. 3927–3932, 2019, doi: 10.1002/cctc.201900481. DOI: https://doi.org/10.1002/cctc.201900481
  64. T. Fovanna et al., “Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural,” RSC Adv., vol. 10, no. 19, pp. 11507–11516, 2020, doi: 10.1039/d0ra00415d. DOI: https://doi.org/10.1039/D0RA00415D
  65. X. Tong, Z. Liu, L. Yu, and Y. Li, “A tunable process: Catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen,” Chem. Commun., vol. 51, no. 17, pp. 3674–3677, 2015, doi: 10.1039/c4cc09562f. DOI: https://doi.org/10.1039/C4CC09562F
  66. Y. Gao, X. Tong, and H. Zhang, “A selective oxidative valorization of biomass-derived furfural and ethanol with the supported gold catalysts,” Catal. Today, pp. 1–8, 2019, doi: 10.1016/j.cattod.2019.05.002. DOI: https://doi.org/10.1016/j.cattod.2019.05.002
  67. M. Signoretto, F. Menegazzo, L. Contessotto, F. Pinna, M. Manzoli, and F. Boccuzzi, “Au/ZrO2: An efficient and reusable catalyst for the oxidative esterification of renewable furfural,” Appl. Catal. B Environ., vol. 129, pp. 287–293, 2013, doi: 10.1016/j.apcatb.2012.09.035. DOI: https://doi.org/10.1016/j.apcatb.2012.09.035
  68. F. Pinna et al., “The effects of gold nanosize for the exploitation of furfural by selective oxidation,” Catal. Today, vol. 203, pp. 196–201, 2013, doi: 10.1016/j.cattod.2012.01.033. DOI: https://doi.org/10.1016/j.cattod.2012.01.033
  69. F. Menegazzo et al., “Oxidative esterification of renewable furfural on gold-based catalysts: Which is the best support?,” J. Catal., vol. 309, pp. 241–247, 2014, doi: 10.1016/j.jcat.2013.10.005. DOI: https://doi.org/10.1016/j.jcat.2013.10.005
  70. N. Alonso-Fagúndez, I. Agirrezabal-Telleria, P. L. Arias, J. L. G. Fierro, R. Mariscal, and M. L. Granados, “Aqueous-phase catalytic oxidation of furfural with H2O2: High yield of maleic acid by using titanium,” RSC Adv., vol. 4, no. 98, pp. 54960–54972, 2014, doi: 10.1039/c4ra11563e. DOI: https://doi.org/10.1039/C4RA11563E
  71. N. Alonso-Fagúndez, M. Ojeda, R. Mariscal, J. L. G. Fierro, and M. López Granados, “Gas phase oxidation of furfural to maleic anhydride on V2O5/Al2O3 catalysts: Reaction conditions to slow down the deactivation,” J. Catal., vol. 348, pp. 265–275, 2017, doi: 10.1016/j.jcat.2016.12.005. DOI: https://doi.org/10.1016/j.jcat.2016.12.005
  72. M. Rezaei, A. Najafi Chermahini, H. A. Dabbagh, M. Saraji, and A. Shahvar, “Furfural oxidation to maleic acid with H2O2 by using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6,” J. Environ. Chem. Eng., vol. 7, no. 1, p. 102855, 2019, doi: 10.1016/j.jece.2018.102855. DOI: https://doi.org/10.1016/j.jece.2018.102855
  73. P. Santander, L. Bravo, G. Pecchi, and A. Karelovic, “The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts,” Appl. Catal. A Gen., vol. 595, no. December 2019, p. 117513, 2020, doi: 10.1016/j.apcata.2020.117513. DOI: https://doi.org/10.1016/j.apcata.2020.117513
  74. C. P. Ferraz, A. G. M. Da Silva, T. S. Rodrigues, P. H. C. Camargo, S. Paul, and R. Wojcieszak, “Furfural oxidation on gold supported on MnO2: Influence of the support structure on the catalytic performances,” Appl. Sci., vol. 8, no. 8, 2018, doi: 10.3390/app8081246. DOI: https://doi.org/10.3390/app8081246
  75. A. Roselli, Y. Carvalho, F. Dumeignil, F. Cavani, S. Paul, and R. Wojcieszak, “Liquid phase furfural oxidation under uncontrolled pH in batch and flow conditions: The role of in situ formed base,” Catalysts, vol. 10, p. 73, 2020, doi: 10.3390/catal10010073. DOI: https://doi.org/10.3390/catal10010073
  76. M. Douthwaite et al., “The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) 2,” Catal. Sci. Technol., vol. 7, no. 22, pp. 5284–5293, 2017, doi: 10.1039/C7CY01025G. DOI: https://doi.org/10.1039/C7CY01025G
  77. B. Singh, A. Verma, Pooja, P. K. Mandal, and S. Datta, “A biotechnological approach for degradation of inhibitory compounds present in lignocellulosic biomass hydrolysate liquor using Bordetella sp. BTIITR,” Chem. Eng. J., vol. 328, pp. 519–526, 2017, doi: 10.1016/j.cej.2017.07.059. DOI: https://doi.org/10.1016/j.cej.2017.07.059
  78. H. Ran, J. Zhang, Q. Gao, Z. Lin, and J. Bao, “Analysis of biodegradation performance of furfural and 5- hydroxymethylfurfural by Amorphotheca resinae ZN1,” Biotechnol. Biofuels, vol. 7, no. 1, pp. 1–12, 2014, doi: 10.1186/1754-6834-7-51. DOI: https://doi.org/10.1186/1754-6834-7-51
  79. F. M. Lin, B. Qiao, and Y. J. Yuan, “Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound,” Appl. Environ. Microbiol., vol. 75, no. 11, pp. 3765–3776, 2009, doi: 10.1128/AEM.02594-08. DOI: https://doi.org/10.1128/AEM.02594-08
  80. M. Ma and Z. L. Liu, “Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae,” BMC Genomics, vol. 11, no. 1, p. 660, 2010, doi: 10.1186/1471-2164-11-660. DOI: https://doi.org/10.1186/1471-2164-11-660
  81. C. Kisker, H. Schindelin, D. Baas, J. Rétey, R. U. Meckenstock, and P. M. H. Kroneck, “A structural comparison of molybdenum cofactor-containing enzymes,” FEMS Microbiol. Rev., vol. 22, no. 5, pp. 503–521, 1998, doi: 10.1016/S0168-6445(98)00040-0. DOI: https://doi.org/10.1111/j.1574-6976.1998.tb00384.x
  82. R. Boopathy, H. Bokang, and L. Daniels, “Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria,” J. Ind. Microbiol., vol. 11, no. 3, pp. 147–150, 1993, doi: 10.1007/BF01583715. DOI: https://doi.org/10.1007/BF01583715
  83. I. Sárvári Horváth, C. J. Franzén, M. J. Taherzadeh, C. Niklasson, and G. Lidén, “Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats.,” Appl. Environ. Microbiol., vol. 69, no. 7, pp. 4076–86, 2003, doi: 10.1128/AEM.69.7.4076. DOI: https://doi.org/10.1128/AEM.69.7.4076-4086.2003
  84. K. Mitsukura, Y. Sato, T. Yoshida, and T. Nagasawa, “Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains,” Biotechnol. Lett., vol. 26, no. 21, pp. 1643–1648, 2004, doi: 10.1007/s10529-004-3513-4. DOI: https://doi.org/10.1007/s10529-004-3513-4
  85. M. J. López, J. Moreno, N. N. Nichols, B. S. Dien, and R. J. Bothast, “Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates,” Appl. Microbiol. Biotechnol., vol. 64, no. 1, pp. 125–131, 2004, doi: 10.1007/s00253-003-1401-9. DOI: https://doi.org/10.1007/s00253-003-1401-9
  86. Y. Zhang, B. Han, and T. C. Ezeji, “Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation,” N. Biotechnol., vol. 29, no. 3, pp. 345–351, 2012, doi: 10.1016/j.nbt.2011.09.001. DOI: https://doi.org/10.1016/j.nbt.2011.09.001
  87. X. Zhou, X. Zhou, and R. R. Chen, “Gluconobacter oxydans ( ATCC 621H ) catalyzed oxidation of furfural for detoxification of furfural and bioproduction of furoic acid,” no. June, 2016, doi: 10.1002/jctb.5122. DOI: https://doi.org/10.1002/jctb.5122
  88. R. L. Kudahettige Nilsson, M. Holmgren, B. Madavi, R. T. Nilsson, and A. Sellstedt, “Adaptability of Trametes versicolor to the lignocellulosic inhibitors furfural, HMF, phenol and levulinic acid during ethanol fermentation,” Biomass and Bioenergy, vol. 90, pp. 95–100, 2016, doi: 10.1016/j.biombioe.2016.03.030. DOI: https://doi.org/10.1016/j.biombioe.2016.03.030
  89. T. Modig, G. Lidén, and M. J. Taherzadeh, “Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase,” Biochem. J., vol. 363, no. 3, pp. 769–776, 2002, doi: 10.1042/bj3630769. DOI: https://doi.org/10.1042/bj3630769
  90. A. Petersson et al., “A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance,” Yeast, vol. 23, no. 6, pp. 455–464, 2006, doi: 10.1002/yea.1370. DOI: https://doi.org/10.1002/yea.1370
  91. O. Sepúlveda Delgado, Z. E. Suárez Aguilar, M. Patarroyo Mesa, S. Bautista Díaz, and L. C. Canaria Camargo, “Estudio del comportamiento e impacto de la climatología sobre el cultivo de la papa y del pasto en la región central de Boyacá empleando los sistemas dinámicos,” Ciencia En Desarrollo, vol. 6, no. 2, pp. 215–224, 2015. DOI: https://doi.org/10.19053/01217488.3792
  92. T. Gutiérrez, L. O. Ingram, and J. F. Preston, “Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1 - An enzyme important in the detoxification of furfural during ethanol production,” J. Biotechnol., vol. 121, no. 2, pp. 154–164, 2006, doi: 10.1016/j.jbiotec.2005.07.003. DOI: https://doi.org/10.1016/j.jbiotec.2005.07.003
  93. J. R. M. Almeida, T. Modig, A. Röder, G. Lidén, and M. F. Gorwa-Grauslund, “Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF),” Biotechnol. Biofuels, vol. 1, pp. 1–9, 2008, doi: 10.1186/1754-6834-1-12. DOI: https://doi.org/10.1186/1754-6834-1-12
  94. Z. L. Liu and J. Moon, “A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion,” Gene, vol. 446, no. 1, pp. 1–10, 2009, doi: 10.1016/j.gene.2009.06.018. DOI: https://doi.org/10.1016/j.gene.2009.06.018
  95. J. Moon and Z. L. Liu, “Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH,” Enzyme Microb. Technol., vol. 50, no. 2, pp. 115–120, 2012, doi: 10.1016/j.enzmictec.2011.10.007. DOI: https://doi.org/10.1016/j.enzmictec.2011.10.007
  96. X. Wang, Q. Gao, and J. Bao, “Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment,” Biotechnol. Biofuels, pp. 1–13, 2015, doi: 10.1186/s13068-015-0323-y. DOI: https://doi.org/10.1186/s13068-015-0323-y
  97. C. Tejada, A. Herrera, and E. Ruiz, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios,” Ciencia En Desarrollo, vol. 7, no. 1, pp. 31–36, 2016, doi: 10.19053/01217488.4228. DOI: https://doi.org/10.19053/01217488.4228
  98. Y. Tsuge, M. Kudou, H. Kawaguchi, J. Ishii, T. Hasunuma, and A. Kondo, “FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum,” Appl. Microbiol. Biotechnol., vol. 100, no. 6, pp. 2685–
  99. , 2016, doi: 10.1007/s00253-015-7115-y. DOI: https://doi.org/10.1007/s00253-015-7115-y
  100. R. Boopathy and L. Daniels, “Isolation and Characterization of a Furfural Degrading Sulfate-Reducing Bacterium from an Anaerobic Digester,” Appl. Environ. Microbiol., vol. 58, no. 9, pp. 2874–2878, 1991, doi: 10.1128/aem.58.9.2874-2878.1992. DOI: https://doi.org/10.1128/aem.58.9.2874-2878.1992
  101. K. L. Yee, L. E. Jansen, C. A. Lajoie, M. H. Penner, L. Morse, and C. J. Kelly, “Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase,” Enzyme Microb. Technol., vol. 108, no. July 2017, pp. 59–65, 2018, doi: 10.1016/j.enzmictec.2017.08.009. DOI: https://doi.org/10.1016/j.enzmictec.2017.08.009

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.