Skip to main navigation menu Skip to main content Skip to site footer

Effect of temperature on the vapour fraction of heavy crude oil in hydrodynamic cavitation Vortex reactor using CFD.

Abstract

Hydrodynamic cavitation is a technology recently implemented for industry applications, such as water treatment, biofuel generation or upgrading of heavy crudes. Heavy crudes are characterised by their low API gravity and high viscosity, which results in higher extraction, transport, and refining costs, and a lower selling price due to their lower content of light fractions such as naphtha. Thus, hydrodynamic cavitation

reactors are used to cavitate the crude oil and improve viscosity, and the efficiency is highly dependent on the operating parameters, such as inlet pressure, temperature, and percentage of a hydrogen donor. In this work, the effect of temperature on the fluid dynamics of the crude oil inside the Vortex HCR-Nano reactor is analysed, taking as a response variable the volume fraction of vapour. The CFD study was done using Ansys Fluent, with five different temperatures between 92◦F and 350◦F, 3D steady-state flow modelling for liquid-vapour multiphase fluid, with realisable k-ε turbulence model, and Schnerr-Sauer cavitation. Results show that the volume of vapour increases with temperature, up to a volume of 1.507 cm3, where its main contribution is due to the Vortex effect. Further research includes the behaviour of hydrodynamic cavitation with different crude oils and operating parameters.

Keywords

CFD, heavy crude oil, hydrodynamic cavitation, temperature, vapour fraction

PDF (Español)

References

  1. M. Sivakumar, S. Y. Tang, and K. W. Tan, “Cavita- tion technology - A greener processing technique for the generation of pharmaceutical nanoemulsions,” Ultrason. Sonochem., vol. 21, no. 6, pp. 2069-083, 2014, doi: 10.1016/j.ultsonch.2014.03.025. DOI: https://doi.org/10.1016/j.ultsonch.2014.03.025
  2. P. R. Gogate, “Hydrodynamic Cavitation for Food and Water Processing,” Food Bioprocess Technol., vol. 4, no. 6, pp. 996-1011, 2011, doi: 10.1007/s11947-010-0418-1. DOI: https://doi.org/10.1007/s11947-010-0418-1
  3. L. F. Gutiérrez-Mosquera, S. Arias-Giraldo, and D. F. Cardona-Naranjo, “Hydrodynamic Cavitation: Enginee- ring and Agribusiness Approach,”vol. 24, no. 02, 2019. DOI: https://doi.org/10.22517/23447214.19921
  4. L. F. Chuah, A. R. A. Aziz, S. Yusup, A. Bokhari, J. J. Klemeš, and M. Z. Abdullah,“Performance and emission of diesel engine fuelled by waste cooking oil methyl es- ter derived from palm olein using hydrodynamic cavitation,” Clean Technol. Environ. Policy, vol. 17, no. 8, pp. 2229-2241, 2015, doi: 10.1007/s10098-015-0957-2. DOI: https://doi.org/10.1007/s10098-015-0957-2
  5. A. Šarc, T. Stepišnik-Perdih, M. Petkovšek, and M. Dular, “The issue of cavitation number value in stu- dies of water treatment by hydrodynamic cavitation,” Ultrason. Sonochem, vol. 34, pp. 51-59, 2017, doi: 10.1016/j.ultsonch.2016.05.020. DOI: https://doi.org/10.1016/j.ultsonch.2016.05.020
  6. P. R. Gogate and A. B. Pandit, “Hydrodynamic cavitation reactors: A state of the art review,” Rev. Chem. Eng., vol. 17, no. 1, pp. 1-85, 2001, doi: 10.1515/REV- CE.2001.17.1.1. DOI: https://doi.org/10.1515/REVCE.2001.17.1.1
  7. M. Dular, “Hydrodynamic cavitation damage in water at elevated temperatures,” Wear, vol. 346-347, pp. 78-86, Jan. 2015, doi: 10.1016/j.wear.2015.11.007. DOI: https://doi.org/10.1016/j.wear.2015.11.007
  8. M. Petkovšek and M. Dular, “IR measurements of the thermodynamic effects in cavitating flow,” Int. J. Heat Fluid Flow, vol. 44, pp. 756-763, Dec. 2013, doi: 10.1016/j.ijheatfluidflow.2013.10.005. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2013.10.005
  9. M. M. Hernández-Cely and C. M. Ruiz-Diaz, “Estudio de los fluidos aceite-agua a través del sensor basado en la permitividad eléctrica del patrón de fluido,” Rev. UIS Ing., vol. 19, no. 3, pp. 177-186, 2020. DOI: https://doi.org/10.18273/revuin.v19n3-2020017
  10. E. Araque, C. Graciano, D. G. Zapata-Medina, and O. A. González-Estrada, “Compressive strength of par- tially stiffened cylinders at elevated temperatures,” Rev.UIS Ing., vol. 19, no. 1, pp. 131-142, 2020, doi: 10.18273/revuin.v19n1-2020013. DOI: https://doi.org/10.18273/revuin.v19n1-2020013
  11. M. F. Palencia Muñoz, N. Prieto-Jiménez, and G. Gon- zález Silva, “Liquid balance - steam for methanol mi- xing - Benzen using the Peng Robinson and Van-Laar models,”Respuestas,vol.24,no.1,pp.34-41,2019,doi: 10.22463/0122820X.1807. DOI: https://doi.org/10.22463/0122820X.1807
  12. H.Shi,M.Li,P.Nikrityuk,andQ.Liu,“Experimentaland numerical study of cavitation flows in venturi tubes: From CFD to an empirical model,” Chem. Eng. Sci., vol. 207, pp. 672-687, Nov. 2019, doi: 10.1016/j.ces.2019.07.004. DOI: https://doi.org/10.1016/j.ces.2019.07.004
  13. S.Cruz,M.Navarrete,F.Godínez,J.Naude,andF.Mén- dez, “Experimentación y modelado en parámetros distri- buidos de flujo cavitante en geometría Venturi,”2017.
  14. N. M. Nouri, S. M. H. Mirsaeedi, and M. Moghimi, “Large eddy simulation of natural cavitating flows in Venturi-type sections,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 225, pp. 369-381, 2010, doi: 10.1243/09544062JMES2036. DOI: https://doi.org/10.1243/09544062JMES2036
  15. E. F. Gandolso-Raso, E. Franco-Cappa, F. H. Moll, M. G. Coussirat, A. Fontanals, and A. Guardo, “Valida- ción/calibración de modelos para flujos cavitantes, aplica- ción al diseño en ingeniería,” Asoc. Argentina Mecánica Comput., vol. 32, no. November, pp. 1135-1153, 2013.
  16. E.F.Cappa,F.Moll,M.Coussirat,E.Gandolfo,A.Fon- tanals, and A. Guardo, “Estudio de sensibilidad de pa- rámetros de modelos en flujos cavitantes en régimen no estacionario,” Mecánica Comput., vol. 33, pp. 93-107, 2014.
  17. A. K. Singhal, M. M. Athavale, H. Li, and Y. Jiang, “Mathematicalbasisandvalidationofthefullcavitation model,” Proc. ASME Fluids Eng. Div. Summer Meet., vol. 1, pp. 379-406, 2003, doi: 10.1115/1.1486223. DOI: https://doi.org/10.1115/1.1486223
  18. J. Sauer and G. H. Schnerr, “Unsteady cavitating flow - A new cavitation model based on a modified front captu- ring method and bubble dynamics,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 251, no. January 2000, pp. 1073-1079, 2000.
  19. B. Avvaru, N. Venkateswaran, P. Uppara, S. B. Iyengar, and S. S. Katti, “Current knowledge and potential applica- tions of cavitation technologies for the petroleum industry,” Ultrason. Sonochem., vol. 42, pp. 493-507, Apr. 2018, doi: 10.1016/j.ultsonch.2017.12.010. DOI: https://doi.org/10.1016/j.ultsonch.2017.12.010
  20. A. N. Sawarkar, “Cavitation induced upgrading of heavy oil and bottom-of-the-barrel: A review,” Ultra- son. Sonochem., vol. 58, p. 104690, Nov. 2019, doi: 10.1016/j.ultsonch.2019.104690. DOI: https://doi.org/10.1016/j.ultsonch.2019.104690
  21. M.Navarrete,A.Vargas,andD.Esquivel,“Rompimiento de la viscosidad en líquidos por cavitación hidrodinámica y acústica,”pp. 1-10.
  22. P. R. Gogate and A. B. Pandit, “Engineering design methods for cavitation reactors II: Hydrodynamic cavi- tation,” AIChE J., vol. 46, pp. 1641-1649, Aug. 2000, doi: 10.1002/aic.690460815. DOI: https://doi.org/10.1002/aic.690460815
  23. W.H.Nurick,“OrificeCavitationandItsEffectonSpray Mixing,” J. Fluids Eng., vol. 98, no. 2, pp. 681-687, Jun. 1976, doi: 10.1115/1.3448785. DOI: https://doi.org/10.1115/1.3448452
  24. F.Moll,D.E.Manuele,M.G.Coussirat,A.Guardo,and A. Fontanals, “Caracterización del tipo de cavitación me- diante dinámica computacional de fluidos para posteriores aplicaciones al estudio experimental del daño por cavita- ción,” Asoc. Argentina Mecánica Comput., vol. XXX, pp. 435-450, 2011.
  25. F.Molletal.,“Optimizacióndeunbancodeensayosde cavitación mediante fluidodinámica computacional,” Mec. Comput., pp. 3661-3676, 2012.
  26. G. P. Salvador and S. H. Frankel, “Numerical modeling of cavitation using fluent: Validation and parametric stu- dies,” 34th AIAA Fluid Dyn. Conf. Exhib., 2004, doi: 10.2514/6.2004-2642. DOI: https://doi.org/10.2514/6.2004-2642
  27. M. Darbandi and H. Sadeghi, “A study on flow th- rough an orifice with prediction of cavitation and hy- draulic flip,” Proc. ASME Fluids Eng. Div. Summer Conf. 2009, FEDSM2009, vol. 2, pp. 381-386, 2009, doi: 10.1115/FEDSM2009-78448. DOI: https://doi.org/10.1115/FEDSM2009-78448
  28. T.Shih,W.Liou,A.Shabbir,Z.Yang,andJ.Zhu,“Anew k-epsilon eddy viscosity model for high reynolds number turbulent flows,” Comput. & Fluids, vol. 24, pp. 227-238, 1995. DOI: https://doi.org/10.1016/0045-7930(94)00032-T
  29. A. Sou, B. Biçer, and A. Tomiyama, “Numerical simulation of incipient cavitation flow in a nozzle of fuel injector,” Comput. Fluids, vol. 103, pp. 42-48, 2014, doi: 10.1016/j.compfluid.2014.07.011. DOI: https://doi.org/10.1016/j.compfluid.2014.07.011
  30. R. Payri, J. M. García, F. J. Salvador, and J. Gimeno, “Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics,” Fuel, vol. 84, no. 5, pp. 551-561, 2005, doi: 10.1016/j.fuel.2004.10.009. DOI: https://doi.org/10.1016/j.fuel.2004.10.009
  31. C. E. Brennen, Cavitation and bubble dynamics. New York: Oxford University Press, 1995.

Downloads

Download data is not yet available.

Similar Articles

You may also start an advanced similarity search for this article.