Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of Glyphosate Adsorption Process in Aqueous Solutions on Fe(III) - Impregnated Bentonite and Kaolinite

Abstract

Glyphosate is a widely used herbicide, however, its detection in water is an environmental problem due to its character as an emerging pollutant. The advanced oxidation processes - AOP are used for its degradation on materials modified with iron. In this study, the adsorption and catalytic degradation capacity of glyphosate was evaluated using bentonite and kaolinite impregnated with iron. The impregnated materials were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy (SEM), to determine structural changes, monitoring of incorporated iron content, and morphological changes, respectively. Subsequently, adsorption tests were carried out using aqueous glyphosate solutions in a concentration range between 12-27 mg/L of glyphosate, using UV-Vis spectroscopy for their quantification, the results showed that both bentonites and kaolinites impregnated with iron reached up to 55 % adsorption of the herbicide. Analysis by FT-IR showed that the impregnated bentonites after the adsorption process exhibit chemical interactions with the herbicide. The catalytic tests revealed that the materials used in this work and under the tested measurement conditions present a degradation percentage of up to 34%.

Keywords

Adsorption, Degradation, Glyphosate, Fe(III)-Impregnation

PDF (Español)

References

  1. A.P. Balderrama-Carmona, M. Valenzuela-Rincón, L.A. Zamora-Álvarez, N.P. Adan-Bante, L.A. Leyva-Soto, N.P. Silva-Beltrán, E.F. Morán-Palacio, Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico, Environmental Science and Pollution Research. 27 (2020) 28480–28489. https://doi.org/10.1007/s11356-019-07087-6. DOI: https://doi.org/10.1007/s11356-019-07087-6
  2. M. Cheron, F. Angelier, C. Ribout, F. Bris- choux, Clutch quality is related to embryo- nic development duration, hatchling body size and telomere length in the spined toad (Bu- fo spinosus), Biological Journal of the Lin- nean Society, vol. 133, pp. 135-142, 2021. https://doi.org/10.1093/biolinnean/blab035 DOI: https://doi.org/10.1093/biolinnean/blab035
  3. andC.R.J.Cárdenas,J.D.Doll,Clasificacion de herbicidas, 1975.
  4. A. Connolly, S. Koslitz, D. Bury, T. Brü- ning, A. Conrad, M. Kolossa-gehring, M.A. Coggins, H.M. Koch, Sensitive and se- lective quantification of glyphosate and aminomethylphosphonic acid (AMPA) in urine of the general population by gas chromatography-tandem mass spectrometry, Journal of Chromatography B, vol. 1158, p. 122348, 2020. https://doi.org/10.1016/j.jchr omb.2020.122348 DOI: https://doi.org/10.1016/j.jchromb.2020.122348
  5. E. Wo, E. Reszka, E. Jab, K. Mokra, A. Balcerczyk, Toxicology in Vitro The selected epigenetic e ff ects of amino- methylphosphonic acid, a primary metaboli- te of glyphosate on human peripheral blood mononuclear cells (in vitro), vol. 66, 2020. https://doi.org/10.1016/j.tiv.2020.104878 DOI: https://doi.org/10.1016/j.tiv.2020.104878
  6. M. Cheron, D. Costantini, F. Brischoux, Chemosphere Aminomethylphosphonic acid (AMPA) alters oxidative status during embryonic development in an amphibian spe- cies, 287 (2022). https://doi.org/10.1016/j.ch emosphere.2021.131882 DOI: https://doi.org/10.1016/j.chemosphere.2021.131882
  7. O. Delhomme, A. Rodrigues, A. Hernandez, S. Chimjarn, C. Bertrand, M. Bourdat- Deschamps, C. Fritsch, C. Pelosi, S. Nélieu, M. Millet, A method to assess glyphosate, glufosinate and aminomethylphosphonic acid
  8. in soil and earthworms, Journal of Chro- matography A, vol. 1651, p. 462339, 2021. https://doi.org/10.1016/j.chroma.2021.462339 DOI: https://doi.org/10.1016/j.chroma.2021.462339
  9. F. Á. Tobón-Marulanda, L. A. López-Giraldo, R. E. Paniagua-Suárez, Water pollution cau- sed by pesticides in an area of Antio- quia, Revista de Salud Publica, vol. 12, pp. 300-307, 2010. https://doi.org/10.1590/s0124- 00642010000200013 DOI: https://doi.org/10.1590/S0124-00642010000200013
  10. E. J. Mendes, L. Malage, D. C. Rocha, R. S. A. Kitamura, S. M. A. Gomes, M. A. Navarro-Silva, M. P. Gomes, Isolated and combined effects of glyphosate and its by-product aminomethylphosphonic acid on the physiology and water remediation capacity of Salvinia molesta, Journal of Hazardous Materials, vol 417, 2021. https://doi.org/10.1016/j.jhazmat.2021.125694 DOI: https://doi.org/10.1016/j.jhazmat.2021.125694
  11. R. Zhu, J. Zhu, F. Ge, P. Yuan, Regeneration of spent organoclays after the sorption of orga- nic pollutants: A review, Journal of Environ- mental Management, vol. 90, pp. 3212-3216, 2009. https://doi.org/10.1016/j.jenvman.2009 .06.015 DOI: https://doi.org/10.1016/j.jenvman.2009.06.015
  12. B. Sarkar, Critical Reviews in Environmental Science and Technology Bioreactive Organo- clay: A New Technology for Environmental Remediation, p. 37-41, 2012.
  13. Momina, M. Shahadat, S. Isamil, Regenera- tion performance of clay-based adsorbents for the removal of industrial dyes: A review, RSC Advances, vol. 8, pp. 24571-24587, 2018. https://doi.org/10.1039/c8ra04290j DOI: https://doi.org/10.1039/C8RA04290J
  14. G.M.Williams,R.Kroes,I.C.Munro,Safety evaluation and risk assessment of the herbici- de Roundup and its active ingredient, glypho- sate, for humans, Regulatory Toxicology and Pharmacology, vol. 31, pp. 117-165, 2000. https://doi.org/10.1006/rtph.1999.1371 DOI: https://doi.org/10.1006/rtph.1999.1371
  15. F. Bruna, R. Celis, I. Pavlovic, C. Barriga, J. Cornejo, M. A. Ulibarri, Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): Systems Mg-Al, Mg-Fe and Mg-Al-Fe, Journal of Hazardous Materials, vol. 168 pp. 1476-1481, 2009. https://doi.org/ 10.1016/j.jhazmat.2009.03.038 DOI: https://doi.org/10.1016/j.jhazmat.2009.03.038
  16. V. Matozzo, J. Fabrello, L. Masiero, F. Ferrac- cioli, L. Finos, P. Pastore, I.M. Di Gangi, S. Bogialli, Ecotoxicological risk assessment for the herbicide glyphosate to non-target aqua- tic species: A case study with the mussel Mytilus galloprovincialis, Environmental Po- llution, vol. 233, pp. 623-632, 2018. https: //doi.org/10.1016/j.envpol.2017.10.100 DOI: https://doi.org/10.1016/j.envpol.2017.10.100
  17. A. Mottier, V. Kientz-Bouchart, A. Serpenti- ni, J. M. Lebel, A. N. Jha, K. Costil, Effects of glyphosate-based herbicides on embryo-
  18. larval development and metamorphosis in the Pacific oyster, Crassostrea gigas, Aquatic To- xicology, vol. 128-129, pp. 67-78, 2013. https: //doi.org/10.1016/j.aquatox.2012.12.002 DOI: https://doi.org/10.1016/j.aquatox.2012.12.002
  19. C. V. Waiman, J.M. Arroyave, H. Chen, W. Tan, M. J. Avena, G. P. Zanini, The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competi- tive adsorption isotherms, Colloids and Surfaces A: Physicochemical and Enginee- ring Aspects, vol. 498, pp. 121-127, 2016. https://doi.org/10.1016/j.colsurfa.2016.03.049 DOI: https://doi.org/10.1016/j.colsurfa.2016.03.049
  20. A. H. Jawad, A.S. Abdulhameed, Mesopo- rous Iraqi red kaolin clay as an efficient ad- sorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study, Sur- faces and Interfaces, vol. 18, p. 100422, 2019. https://doi.org/10.1016/j.surfin.2019.100422 DOI: https://doi.org/10.1016/j.surfin.2019.100422
  21. C. Maqueda, E. Morillo, T. Undabeytia, Co- sorption of glyphosate and copper (II) on goethite, Soil Science, vol. 167, pp. 659- 665, 2002. https://doi.org/10.1097/00010694- 200210000-00004 DOI: https://doi.org/10.1097/00010694-200210000-00004
  22. G. A. Khoury, T. C. Gehris, L. Tribe, R. M. Torres Sánchez, M. dos Santos Afonso, Glyphosate adsorption on mont- morillonite: An experimental and theore- tical study of surface complexes, Applied Clay Science, vol. 50, pp. 167-175, 2010. https://doi.org/10.1016/j.clay.2010.07.018 DOI: https://doi.org/10.1016/j.clay.2010.07.018
  23. F. G. E. Nogueira, J. H. Lopes, A. C. Sil- va, R. M. Lago, J. D. Fabris, L. C. A. Oliveira, Catalysts based on clay and iron oxide for oxidation of toluene, Applied Clay Science, vol. 51, pp. 385-389, 2011. https://doi.org/10.1016/j.clay.2010.12.007 DOI: https://doi.org/10.1016/j.clay.2010.12.007
  24. S. Louhichi, A. Ghorbel, H. Chekir, N. Tra- belsi, S. Khemakhem, Properties of modified crude clay by iron and copper nanoparticles as potential hydrogen sulfide adsorption, Ap- plied Clay Science, vol. 127-128, pp. 123-128, 2016. https://doi.org/10.1016/j.clay.2016.04 .007 DOI: https://doi.org/10.1016/j.clay.2016.04.007
  25. J. O. Otalvaro, M. Brigante, Interaction of pesticides with natural and synthetic solids. Evaluation in dynamic and equilibrium con- ditions, Environmental Science and Pollu- tion Research, vol. 25, pp. 6707-6719, 2018. https://doi.org/10.1007/s11356-017-1020-0 DOI: https://doi.org/10.1007/s11356-017-1020-0
  26. D. R. D. Souza, A. G. Trovõ, N. R. A. Filho, M. A. A. Silva, A. E. H. Machado, Degrada- tion of the commercial herbicide glyphosate by photo-fenton process: Evaluation of kinetic parameters and toxicity, Journal of the Brazi- lian Chemical Society, vol. 24, pp. 1451-1460, 2013. https://doi.org/10.5935/0103-5053.20 130185 DOI: https://doi.org/10.5935/0103-5053.20130185
  27. A. Rey, J. A. Zazo, J. A. Casas, A. Baha- monde, J. J. Rodriguez, Influence of the structural and surface characteristics of ac- tivated carbon on the catalytic decomposi- tion of hydrogen peroxide, Applied Cataly- sis A: General, vol. 402, pp. 146-155, 2011. https://doi.org/10.1016/j.apcata.2011.05.040 DOI: https://doi.org/10.1016/j.apcata.2011.05.040
  28. Z. Gong, L. Liao, G. Lv, X. Wang, A simple method for physical purification of bentonite, Applied Clay Science, vol. 119, pp. 294-300, 2016. https://doi.org/10.1016/j.clay.2015.10 .031 DOI: https://doi.org/10.1016/j.clay.2015.10.031
  29. M. Becˇelic ́-Tomin, A. Kulic ́, Ð. Kerkez, D. Tomaševic ́ Pilipovic ́, V. Pešic ́, B. Dalmacija, Synthesis of impregnated bentonite using ul- trasound waves for application in the Fenton process, Clay Minerals, vol. 53, pp. 203-212, 2018. https://doi.org/10.1180/clm.2018.14 DOI: https://doi.org/10.1180/clm.2018.14
  30. R. C. Pereira, A. C. S. da Costa, F. F. Ivashita, A. Paesano, D. A. M. Zaia, Interaction bet- ween glyphosate and montmorillonite in the presence of artificial seawater, Heliyon, vol. 6, 2020. https://doi.org/10.1016/j.heliyon.20 20.e03532 DOI: https://doi.org/10.1016/j.heliyon.2020.e03532
  31. V. A. Gómez-Obando, A. M. García-Mora, J. S. Basante, A. Hidalgo, and L. A. Galeano, “CWPO Degradation of Methyl Orange at Circumneutral pH: Multi-Response Statisti- cal Optimization, Main Intermediates and by- Products,” Front Chem, vol. 7, 2019. DOI: DOI: https://doi.org/10.3389/fchem.2019.00772
  32. 3389/fchem.2019.00772
  33. N. Méité, L.K. Konan, M.T. Tognonvi, B.I.H.G. Doubi, M. Gomina, S. Oyetola, Properties of hydric and biodegradability of cassava starch-based bioplastics reinforced with thermally modified kaolin, Carbohydra- te Polymers, vol. 254, 2021. https://doi.org/10 .1016/j.carbpol.2020.117322 DOI: https://doi.org/10.1016/j.carbpol.2020.117322
  34. M. Idrissi, Y. Miyah, Y. Benjelloun, M. Chaouch, Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2, Journal of Ma- terials and Environmental Science, vol. 7, pp. 50-58, 2016.
  35. J. J. R. Márquez, I. Levchuk, M. Sillanpä, Application of catalytic wet peroxide oxi- dation for industrial and urban wastewater treatment: A review, Catalysts, vol. 8, 2018. https://doi.org/10.3390/catal8120673 DOI: https://doi.org/10.3390/catal8120673
  36. S. Mustapha, M. M. Ndamitso, A. S. Abdul- kareem, J. O. Tijani, A. K. Mohammed, D. T. Shuaib, Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater, Heliyon, vol. 5 p. e02923, 2019. https://doi.org/10.1016/j.heliyon.2019 .e02923 DOI: https://doi.org/10.1016/j.heliyon.2019.e02923
  37. R. L. Ledoux, J. L. White, Infrared Studies of Hydrogen Bonding Interaction Between Kaolinite Surfaces and Intercalated Potassium Acetate, Hydrazine, Formamide, and Urea s, n.d.
  38. S. Asuha, F. Fei, W. Wurendaodi, S. Zhao, H. Wu, X. Zhuang, Activation of kaolinite by a low-temperature chemical method and its effect on methylene blue adsorption, Powder Technology, vol. 361, pp. 624-632, 2020. https://doi.org/10.1016/j.powtec.2019.11.068 DOI: https://doi.org/10.1016/j.powtec.2019.11.068
  39. L. Zhirong, M. Azhar Uddin, S. Zhanxue, FT- IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochimica Acta - Part A: Molecular and Biomolecu- lar Spectroscopy, vol 79 pp. 1013-1016, 2011. https://doi.org/10.1016/j.saa.2011.04.013 DOI: https://doi.org/10.1016/j.saa.2011.04.013
  40. B. C. and A. M. D. S. Barja, An ATR-FTIR Study of Glyphosate and Its Fe(III) Complex in Aqueous Solution, 1998.
  41. R. C. Pereira, P. R. Anizelli, E. di Mau- ro, D. F. Valezi, A. C. S. da Costa, C. T. B. V. Zaia, D. A. M. Zaia, The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite, Geochemi- cal Transactions, vol. 20, pp. 1-14, 2019. https://doi.org/10.1186/s12932-019-0063-1 DOI: https://doi.org/10.1186/s12932-019-0063-1
  42. K. Dideriksen, S. L. S. Stipp, The adsorption of glyphosate and phosphate to goethite: A molecular-scale atomic force micros- copy study, Geochimica et Cosmochimica Acta, vol. 67, pp. 3313-3327, 2003. https: //doi.org/10.1016/S0016-7037(02)01369-8 DOI: https://doi.org/10.1016/S0016-7037(02)01369-8
  43. Cruz Vera et al.
  44. T. Orcelli, E. di Mauro, A. Urbano, D. F. Vale- zi,A.C.S.daCosta,C.T.B.V.Zaia,D.A.M. Zaia, Study of Interaction Between Glypho- sate and Goethite Using Several Methodo- logies: an Environmental Perspective, Wa- ter, Air, and Soil Pollution, vol. 229, 2018. https://doi.org/10.1007/s11270-018-3806-1 DOI: https://doi.org/10.1007/s11270-018-3806-1

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.