Evaluación de los procesos de adsorción del glifosato en disoluciones acuosas utilizando bentonita y caolinita impregnadas con Fe(III)
Resumen
El glifosato es un herbicida muy utilizado, sin embargo, su detección en agua es un problema ambiental debido a su carácter como contaminante emergente. Para su degradación se utilizan procesos de oxidación avanzada-POA sobre materiales modificados con hierro. En este estudio se evaluó la capacidad de adsorción y degradación catalítica del glifosato utilizando bentonita y caolinita impregnadas con hierro. Los materiales impregnados se caracterizaron mediante Difracción de Rayos X (DRX), Fluorescencia de Rayos X (FRX) y Microscopía Electrónica de Barrido (MEB), para determinar cambios estructurales, hacer un seguimiento al contenido de hierro incorporado y cambios morfológicos, respectivamente. Posteriormente, se realizaron pruebas de adsorción utilizando disoluciones acuosas de glifosato en un rango de concentraciones entre 12-27 mg/L de glifosato, utilizando espectroscopía UV-Vis para su cuantificación, los resultados demostraron que tanto las bentonitas como las caolinitas impregnadas con hierro alcanzaron hasta el 55% de adsorción del herbicida. El análisis por FT-IR demostró que las bentonitas impregnadas después del proceso de adsorción presentan interacciones químicas con el herbicida. Las pruebas catalíticas revelaron que los materiales utilizados en este trabajo y bajo las condiciones de medida probadas presentan un porcentaje de degradación de hasta el 34 %.
Palabras clave
Adsorción, Degradación, Glifosato, Impregnación con Fe(III)
Citas
- A.P. Balderrama-Carmona, M. Valenzuela-Rincón, L.A. Zamora-Álvarez, N.P. Adan-Bante, L.A. Leyva-Soto, N.P. Silva-Beltrán, E.F. Morán-Palacio, Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico, Environmental Science and Pollution Research. 27 (2020) 28480–28489. https://doi.org/10.1007/s11356-019-07087-6. DOI: https://doi.org/10.1007/s11356-019-07087-6
- M. Cheron, F. Angelier, C. Ribout, F. Bris- choux, Clutch quality is related to embryo- nic development duration, hatchling body size and telomere length in the spined toad (Bu- fo spinosus), Biological Journal of the Lin- nean Society, vol. 133, pp. 135-142, 2021. https://doi.org/10.1093/biolinnean/blab035 DOI: https://doi.org/10.1093/biolinnean/blab035
- andC.R.J.Cárdenas,J.D.Doll,Clasificacion de herbicidas, 1975.
- A. Connolly, S. Koslitz, D. Bury, T. Brü- ning, A. Conrad, M. Kolossa-gehring, M.A. Coggins, H.M. Koch, Sensitive and se- lective quantification of glyphosate and aminomethylphosphonic acid (AMPA) in urine of the general population by gas chromatography-tandem mass spectrometry, Journal of Chromatography B, vol. 1158, p. 122348, 2020. https://doi.org/10.1016/j.jchr omb.2020.122348 DOI: https://doi.org/10.1016/j.jchromb.2020.122348
- E. Wo, E. Reszka, E. Jab, K. Mokra, A. Balcerczyk, Toxicology in Vitro The selected epigenetic e ff ects of amino- methylphosphonic acid, a primary metaboli- te of glyphosate on human peripheral blood mononuclear cells (in vitro), vol. 66, 2020. https://doi.org/10.1016/j.tiv.2020.104878 DOI: https://doi.org/10.1016/j.tiv.2020.104878
- M. Cheron, D. Costantini, F. Brischoux, Chemosphere Aminomethylphosphonic acid (AMPA) alters oxidative status during embryonic development in an amphibian spe- cies, 287 (2022). https://doi.org/10.1016/j.ch emosphere.2021.131882 DOI: https://doi.org/10.1016/j.chemosphere.2021.131882
- O. Delhomme, A. Rodrigues, A. Hernandez, S. Chimjarn, C. Bertrand, M. Bourdat- Deschamps, C. Fritsch, C. Pelosi, S. Nélieu, M. Millet, A method to assess glyphosate, glufosinate and aminomethylphosphonic acid
- in soil and earthworms, Journal of Chro- matography A, vol. 1651, p. 462339, 2021. https://doi.org/10.1016/j.chroma.2021.462339 DOI: https://doi.org/10.1016/j.chroma.2021.462339
- F. Á. Tobón-Marulanda, L. A. López-Giraldo, R. E. Paniagua-Suárez, Water pollution cau- sed by pesticides in an area of Antio- quia, Revista de Salud Publica, vol. 12, pp. 300-307, 2010. https://doi.org/10.1590/s0124- 00642010000200013 DOI: https://doi.org/10.1590/S0124-00642010000200013
- E. J. Mendes, L. Malage, D. C. Rocha, R. S. A. Kitamura, S. M. A. Gomes, M. A. Navarro-Silva, M. P. Gomes, Isolated and combined effects of glyphosate and its by-product aminomethylphosphonic acid on the physiology and water remediation capacity of Salvinia molesta, Journal of Hazardous Materials, vol 417, 2021. https://doi.org/10.1016/j.jhazmat.2021.125694 DOI: https://doi.org/10.1016/j.jhazmat.2021.125694
- R. Zhu, J. Zhu, F. Ge, P. Yuan, Regeneration of spent organoclays after the sorption of orga- nic pollutants: A review, Journal of Environ- mental Management, vol. 90, pp. 3212-3216, 2009. https://doi.org/10.1016/j.jenvman.2009 .06.015 DOI: https://doi.org/10.1016/j.jenvman.2009.06.015
- B. Sarkar, Critical Reviews in Environmental Science and Technology Bioreactive Organo- clay: A New Technology for Environmental Remediation, p. 37-41, 2012.
- Momina, M. Shahadat, S. Isamil, Regenera- tion performance of clay-based adsorbents for the removal of industrial dyes: A review, RSC Advances, vol. 8, pp. 24571-24587, 2018. https://doi.org/10.1039/c8ra04290j DOI: https://doi.org/10.1039/C8RA04290J
- G.M.Williams,R.Kroes,I.C.Munro,Safety evaluation and risk assessment of the herbici- de Roundup and its active ingredient, glypho- sate, for humans, Regulatory Toxicology and Pharmacology, vol. 31, pp. 117-165, 2000. https://doi.org/10.1006/rtph.1999.1371 DOI: https://doi.org/10.1006/rtph.1999.1371
- F. Bruna, R. Celis, I. Pavlovic, C. Barriga, J. Cornejo, M. A. Ulibarri, Layered double hydroxides as adsorbents and carriers of the herbicide (4-chloro-2-methylphenoxy)acetic acid (MCPA): Systems Mg-Al, Mg-Fe and Mg-Al-Fe, Journal of Hazardous Materials, vol. 168 pp. 1476-1481, 2009. https://doi.org/ 10.1016/j.jhazmat.2009.03.038 DOI: https://doi.org/10.1016/j.jhazmat.2009.03.038
- V. Matozzo, J. Fabrello, L. Masiero, F. Ferrac- cioli, L. Finos, P. Pastore, I.M. Di Gangi, S. Bogialli, Ecotoxicological risk assessment for the herbicide glyphosate to non-target aqua- tic species: A case study with the mussel Mytilus galloprovincialis, Environmental Po- llution, vol. 233, pp. 623-632, 2018. https: //doi.org/10.1016/j.envpol.2017.10.100 DOI: https://doi.org/10.1016/j.envpol.2017.10.100
- A. Mottier, V. Kientz-Bouchart, A. Serpenti- ni, J. M. Lebel, A. N. Jha, K. Costil, Effects of glyphosate-based herbicides on embryo-
- larval development and metamorphosis in the Pacific oyster, Crassostrea gigas, Aquatic To- xicology, vol. 128-129, pp. 67-78, 2013. https: //doi.org/10.1016/j.aquatox.2012.12.002 DOI: https://doi.org/10.1016/j.aquatox.2012.12.002
- C. V. Waiman, J.M. Arroyave, H. Chen, W. Tan, M. J. Avena, G. P. Zanini, The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competi- tive adsorption isotherms, Colloids and Surfaces A: Physicochemical and Enginee- ring Aspects, vol. 498, pp. 121-127, 2016. https://doi.org/10.1016/j.colsurfa.2016.03.049 DOI: https://doi.org/10.1016/j.colsurfa.2016.03.049
- A. H. Jawad, A.S. Abdulhameed, Mesopo- rous Iraqi red kaolin clay as an efficient ad- sorbent for methylene blue dye: Adsorption kinetic, isotherm and mechanism study, Sur- faces and Interfaces, vol. 18, p. 100422, 2019. https://doi.org/10.1016/j.surfin.2019.100422 DOI: https://doi.org/10.1016/j.surfin.2019.100422
- C. Maqueda, E. Morillo, T. Undabeytia, Co- sorption of glyphosate and copper (II) on goethite, Soil Science, vol. 167, pp. 659- 665, 2002. https://doi.org/10.1097/00010694- 200210000-00004 DOI: https://doi.org/10.1097/00010694-200210000-00004
- G. A. Khoury, T. C. Gehris, L. Tribe, R. M. Torres Sánchez, M. dos Santos Afonso, Glyphosate adsorption on mont- morillonite: An experimental and theore- tical study of surface complexes, Applied Clay Science, vol. 50, pp. 167-175, 2010. https://doi.org/10.1016/j.clay.2010.07.018 DOI: https://doi.org/10.1016/j.clay.2010.07.018
- F. G. E. Nogueira, J. H. Lopes, A. C. Sil- va, R. M. Lago, J. D. Fabris, L. C. A. Oliveira, Catalysts based on clay and iron oxide for oxidation of toluene, Applied Clay Science, vol. 51, pp. 385-389, 2011. https://doi.org/10.1016/j.clay.2010.12.007 DOI: https://doi.org/10.1016/j.clay.2010.12.007
- S. Louhichi, A. Ghorbel, H. Chekir, N. Tra- belsi, S. Khemakhem, Properties of modified crude clay by iron and copper nanoparticles as potential hydrogen sulfide adsorption, Ap- plied Clay Science, vol. 127-128, pp. 123-128, 2016. https://doi.org/10.1016/j.clay.2016.04 .007 DOI: https://doi.org/10.1016/j.clay.2016.04.007
- J. O. Otalvaro, M. Brigante, Interaction of pesticides with natural and synthetic solids. Evaluation in dynamic and equilibrium con- ditions, Environmental Science and Pollu- tion Research, vol. 25, pp. 6707-6719, 2018. https://doi.org/10.1007/s11356-017-1020-0 DOI: https://doi.org/10.1007/s11356-017-1020-0
- D. R. D. Souza, A. G. Trovõ, N. R. A. Filho, M. A. A. Silva, A. E. H. Machado, Degrada- tion of the commercial herbicide glyphosate by photo-fenton process: Evaluation of kinetic parameters and toxicity, Journal of the Brazi- lian Chemical Society, vol. 24, pp. 1451-1460, 2013. https://doi.org/10.5935/0103-5053.20 130185 DOI: https://doi.org/10.5935/0103-5053.20130185
- A. Rey, J. A. Zazo, J. A. Casas, A. Baha- monde, J. J. Rodriguez, Influence of the structural and surface characteristics of ac- tivated carbon on the catalytic decomposi- tion of hydrogen peroxide, Applied Cataly- sis A: General, vol. 402, pp. 146-155, 2011. https://doi.org/10.1016/j.apcata.2011.05.040 DOI: https://doi.org/10.1016/j.apcata.2011.05.040
- Z. Gong, L. Liao, G. Lv, X. Wang, A simple method for physical purification of bentonite, Applied Clay Science, vol. 119, pp. 294-300, 2016. https://doi.org/10.1016/j.clay.2015.10 .031 DOI: https://doi.org/10.1016/j.clay.2015.10.031
- M. Becˇelic ́-Tomin, A. Kulic ́, Ð. Kerkez, D. Tomaševic ́ Pilipovic ́, V. Pešic ́, B. Dalmacija, Synthesis of impregnated bentonite using ul- trasound waves for application in the Fenton process, Clay Minerals, vol. 53, pp. 203-212, 2018. https://doi.org/10.1180/clm.2018.14 DOI: https://doi.org/10.1180/clm.2018.14
- R. C. Pereira, A. C. S. da Costa, F. F. Ivashita, A. Paesano, D. A. M. Zaia, Interaction bet- ween glyphosate and montmorillonite in the presence of artificial seawater, Heliyon, vol. 6, 2020. https://doi.org/10.1016/j.heliyon.20 20.e03532 DOI: https://doi.org/10.1016/j.heliyon.2020.e03532
- V. A. Gómez-Obando, A. M. García-Mora, J. S. Basante, A. Hidalgo, and L. A. Galeano, “CWPO Degradation of Methyl Orange at Circumneutral pH: Multi-Response Statisti- cal Optimization, Main Intermediates and by- Products,” Front Chem, vol. 7, 2019. DOI: DOI: https://doi.org/10.3389/fchem.2019.00772
- 3389/fchem.2019.00772
- N. Méité, L.K. Konan, M.T. Tognonvi, B.I.H.G. Doubi, M. Gomina, S. Oyetola, Properties of hydric and biodegradability of cassava starch-based bioplastics reinforced with thermally modified kaolin, Carbohydra- te Polymers, vol. 254, 2021. https://doi.org/10 .1016/j.carbpol.2020.117322 DOI: https://doi.org/10.1016/j.carbpol.2020.117322
- M. Idrissi, Y. Miyah, Y. Benjelloun, M. Chaouch, Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2, Journal of Ma- terials and Environmental Science, vol. 7, pp. 50-58, 2016.
- J. J. R. Márquez, I. Levchuk, M. Sillanpä, Application of catalytic wet peroxide oxi- dation for industrial and urban wastewater treatment: A review, Catalysts, vol. 8, 2018. https://doi.org/10.3390/catal8120673 DOI: https://doi.org/10.3390/catal8120673
- S. Mustapha, M. M. Ndamitso, A. S. Abdul- kareem, J. O. Tijani, A. K. Mohammed, D. T. Shuaib, Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater, Heliyon, vol. 5 p. e02923, 2019. https://doi.org/10.1016/j.heliyon.2019 .e02923 DOI: https://doi.org/10.1016/j.heliyon.2019.e02923
- R. L. Ledoux, J. L. White, Infrared Studies of Hydrogen Bonding Interaction Between Kaolinite Surfaces and Intercalated Potassium Acetate, Hydrazine, Formamide, and Urea s, n.d.
- S. Asuha, F. Fei, W. Wurendaodi, S. Zhao, H. Wu, X. Zhuang, Activation of kaolinite by a low-temperature chemical method and its effect on methylene blue adsorption, Powder Technology, vol. 361, pp. 624-632, 2020. https://doi.org/10.1016/j.powtec.2019.11.068 DOI: https://doi.org/10.1016/j.powtec.2019.11.068
- L. Zhirong, M. Azhar Uddin, S. Zhanxue, FT- IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite, Spectrochimica Acta - Part A: Molecular and Biomolecu- lar Spectroscopy, vol 79 pp. 1013-1016, 2011. https://doi.org/10.1016/j.saa.2011.04.013 DOI: https://doi.org/10.1016/j.saa.2011.04.013
- B. C. and A. M. D. S. Barja, An ATR-FTIR Study of Glyphosate and Its Fe(III) Complex in Aqueous Solution, 1998.
- R. C. Pereira, P. R. Anizelli, E. di Mau- ro, D. F. Valezi, A. C. S. da Costa, C. T. B. V. Zaia, D. A. M. Zaia, The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite, Geochemi- cal Transactions, vol. 20, pp. 1-14, 2019. https://doi.org/10.1186/s12932-019-0063-1 DOI: https://doi.org/10.1186/s12932-019-0063-1
- K. Dideriksen, S. L. S. Stipp, The adsorption of glyphosate and phosphate to goethite: A molecular-scale atomic force micros- copy study, Geochimica et Cosmochimica Acta, vol. 67, pp. 3313-3327, 2003. https: //doi.org/10.1016/S0016-7037(02)01369-8 DOI: https://doi.org/10.1016/S0016-7037(02)01369-8
- Cruz Vera et al.
- T. Orcelli, E. di Mauro, A. Urbano, D. F. Vale- zi,A.C.S.daCosta,C.T.B.V.Zaia,D.A.M. Zaia, Study of Interaction Between Glypho- sate and Goethite Using Several Methodo- logies: an Environmental Perspective, Wa- ter, Air, and Soil Pollution, vol. 229, 2018. https://doi.org/10.1007/s11270-018-3806-1 DOI: https://doi.org/10.1007/s11270-018-3806-1