Skip to main navigation menu Skip to main content Skip to site footer

MOLECULAR IDENTIFICATION OF ANASTOMOSIS GROUPS OF Rhizoctonia solani Kühn CAUSING POTATO BLACK SCAB IN NARIÑO (COLOMBIA)

Abstract

Rhizoctonia solani Kühn, which causes black scab on potato, has increased its incidence in Nariño, making its management difficult. The lack of knowledge of the anastomosis groups (AG) present in its populations contributes to this situation, since they influence the performance of control strategies. Therefore, the genetic variability of R. solani in Nariño was evaluated by the molecular identification of their AG. A total of 287 isolates obtained of potato were analyzed, 116 of them with PCR and ITS1-ITS4 primers and the entire collection with PCR and specific primers for AG-2-1, AG-3 PT and AG-4. Phylogenetic analysis was done with Maximum Likelihood, bootstrap of 1000 replicates and Kimura 2-parameter model. In the molecular characterization with ITS, 100 % of the sequences matched with R. solani and AG-3 (46), AG-3 PT (69) and AG-2-1 (1) were identified. Specific primers determined the presence of AG-3 PT in 281 and AG-2-1 in six isolates of the pathogen. R. solani AG-2-1 is reported for the first time in Nariño. Phylogenetic analysis grouped the isolates into seven clades, independently of local origin, demonstrating the existence of intraspecific genetic variability in the populations of R. solani present in Nariño.

Keywords

Solanum tuberosum, Stem canker, Genetic variability, PCR, Primers


References

  1. O. Rashed, S. N. A. Abdullah, W. Alsultan, T. Misawa, K. Ahmad and A. B. Kutawa, “Characterization of inter and intra anastomosis group of Rhizoctonia spp. isolated from different crops in Peninsular Malaysia,” Trop Plant Pathol, no. June, 2021. DOI: 10.1007/s40858-021-00433-5.
  2. M. Sharon, S. Kuninaga, M. Hyakumachi and B. Sneh, “The advancing identification and classification of Rhizoctonia spp. using molecular and biotechnological methods compared with the classical anastomosis grouping”, Mycoscience, vol. 47, no. 6, pp. 299-316, dic. 2006. DOI: 10.1007/s10267-006-0320-x
  3. B. Sneh, L. Burpee and A. Ogoshi, Identification of Rhizoctonia species, American Phytopathological Society Press, St. Paul, MN, 1991.
  4. A. Ogoshi, "Ecology and pathogenicity of anastomosis and intraspecific groups of Rhizoctonia solani Kühn," The Annual Review of Phytopathology, 25, 125-143, 1987.
  5. C. Nandeesha, K. Nandeesha and C. Bhaliya, “Evolutionary biology and interaction among the anastomosis groups of Rhizoctonia spp.,” J Pharmacogn Phytochem, vol. 10, no. 2, pp. 461–466, Mar. 2021. DOI: 10.22271/phyto.2021.v10.i2f.13840.
  6. O. O. Ajayi-Oyetunde & C. A. Bradley, “Identification and Characterization of Rhizoctonia Species Associated with Soybean Seedling Disease,” Plant Dis, vol. 104, no. 4, pp. 520–533, 2017. DOI: 10.1094/PDIS-06-16-0810-RE.
  7. A. Kaushik, D. P. Roberts, A. ramaprasad, S. Mfarrej, M. Nair, D. Lakshman and A. Pain, “Pangenome Analysis of the Soilborne Fungal Phytopathogen Rhizoctonia solani and Development of a Comprehensive Web Resource: RsolaniDB,” Front Microbiol, vol. 13, no. March, 2022. DOI: 10.3389/fmicb.2022.839524.
  8. R. C. Foley, C. A. Gleason, J. P. Anderson, T. Hamann and K. B. Singh, “Genetic and genomic analysis of Rhizoctonia solani interactions with Arabidopsis; Evidence of resistance mediated through NADPH Oxidases”, PLoS One 8, no 2: e56814, february, 2013. DOI: 10.1371/journal.pone.0056814.
  9. T. Chosdon, K. A. Das, R. Nawale, B. R. Kailash, S. B. Koder and S. Srivastava, “Anastomosis groups of multinucleate and binucleate Rhizoctonia,” Current Advances in Agricultural Sciences (An International Journal), vol. 13, no. 2, pp. 71–77, 2021. DOI: 10.5958/2394-4471.2021.00016.2.
  10. D. González, “Estado Actual de la Taxonomía de Rhizoctonia solani Kühn,” Rev. Mexicana de Fitopatología, vol. 20, no. 2, pp. 200–205, 2002, Accessed: nov. 29, 2020. DOI: http://www.redalyc.org/articulo.oa?id=61220211
  11. D. E. Carling, “GROUPING IN RHIZOCTONIA SOLAN / BY HYPHAL ANASTOMOSIS REACTION. Group proposed,” B. Sneh et al. (eds.), Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Constrol, pp. 37–47, 1996.
  12. M. González García, “Aspectos de sistemática y biología del complejo Rhizoctonia,” 2008.
  13. D. E. Carling, R. E. Baird, R. D. Gitaitis, K. A. Brainard and S. Kuninaga, “Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani,” Phytopathology, vol. 92, no. 8, pp. 893–899, 2002. DOI: 10.1094/PHYTO.2002.92.8.893.
  14. M. A. Cubeta & R. Vilgalys, “Population biology of the Rhizoctonia solani complex,” in Phytopathology, American Phytopathological Society, Feb. 1997, pp. 480–483. DOI: 10.1094/phyto.1997.87.4.480.
  15. J. Kiptoo et al., “Rhizoctonia solani of potato and its management: a review,” Plant Protection, vol. 5, no. 3, pp. 157–169, Dec. 2021. DOI: 10.33804/pp.005.03.3925.
  16. B. Sneh, S. Jabaji and S. M. Neate, Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Springer Netherlands, 1998. DOI: 10.1007/978-94-017-2901-7.
  17. M. S. Melzer, H. Yu, T. Labun, A. Dickson and G. J. Boland, “Characterization and pathogenicity of Rhizoctonia spp. from field crops in Canada”, Canadian Journal of Plant Pathology, 2016. DOI: 10.1080/07060661.2016.1199596.
  18. A. S. Gondal, A. Rauf and F. Naz, “Anastomosis Groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan”, Scientific Reports, vol. 9, pp. 1-12, 2019. DOI: 10.1038/s41598-019-40043-5.
  19. T. Misawa & D. Kurose, “Anastomosis group and subgroup identification of Rhizoctonia solani strains deposited in NARO Genebank, Japan,” Journal of General Plant Pathology, vol. 85, pp. 282–294, jul. 2019. DOI: 10.1007/s10327-019-00848-8.
  20. M. Mori, T. Bannai and T. Misawa, “First report of leaf blight and petiole rot of carrot caused by Rhizoctonia solani AG-1 IB”, Journal of General Plant Pathology, 2020. DOI: 10.1007/s10327-020-00966-8.
  21. Y. Yang, C. Zhao, Z. Guo and X. Wu, “Anastomosis group and pathogenicity of Rhizoctonia solani associated with stem canker and black scurf of potato in China,” Eur J Plant Pathol, 2015. DOI: 10.1007/s10658-015-0668-x.
  22. C. Betancourth, B. Sañudo, C. Flórez, B. Castro, F. Arteaga y C. Salazar, “Vulneración del cultivo de papa ante problemas sanitarios emergentes en Nariño”. 1 ed. Editorial Universidad de Nariño, 2020, 26 p.
  23. D.E. Carling & R.H. Leiner, “Isolation and characterization of Rhizoctonia solani and binucleate R. solani-like fungi from aerial stems and subterranean organs of potato plants”, Phytopathology, 76, 725-729, 1986.
  24. B. Bandy, S. Leach and S. Tavantzis, “Anastomosis group 3 is the major cause of Rhizoctonia disease of potato in Maine”, Plant Disease, 72, 596-598, 1988.
  25. D. E. Carling, R. H. Leiner and P. C. “Westphale Symptoms, signs and yield reduction associated with Rhizoctonia disease of potato induced by tuberborne inoculum of Rhizoctonia solani AG-3”, American Potato Journal, 66(11), 693–701, 1989. DOI: 10.1007/BF02896825.
  26. R. Anguiz & C. Martin, “Anastomosis groups, pathogenicity, and other characteristics of Rhizoctonia solani isolated from potatoes in Perú”, Plant Disease, 73, 199-201, 1989.
  27. G. Balali, S. Neate, E. Scott, D. Whisson and T. Wicks, “Anastomosis group and pathogenicity of isolates of Rhizoctonia solani from potato crops in South Australia”, Plant Pathology, 44, 1050-1057, 1995.
  28. T. Chand & C. Logan, “Cultural and pathogenic variation in potato isolates of Rhizoctonia solani in Northern Ireland”, Tran. of British Mycological Society, 81, 585-589, 1983.
  29. A. El Bakali, A. Lilja, J. Hantula and M. Martin, “Identification of spanish isolates of Rhizoctonia solani from potato by anastomosis grouping, ITS-RFLP and RAMS-fingerprinting”, Phytopathol. Mediterr., vol.42, no. 2, 167-176, 2003.
  30. L. Cedeño, C. Carrero, K. Quintero, Y. Araujo, H. Pino y R. García, “Identificación y virulencia de grupos de anastomosis de Rhizoctonia solani Kühn Asociados con papa en Mérida, Venezuela,” Interciencia, vol. 26, no. 7, pp. 296–300, 2001.
  31. J. Woodhall, A. Lees, S. Edwards and P. Jenkinson, “Characterization of Rhizoctonia solani from potato in Great Britain”, Plant pathology, 56, 286-295, 2007.
  32. M. J. Lehtonen, P. Ahvenniemi, P. Wilson and M. German-Kinnari, “Biological diversity of Rhizoctonia solani (AG-3) in a northern potato-cultivation environment in Finland”, Plant Pathology, 57, 1, 141–151, 2008.
  33. N. Muzhinji, M. Truter, J. W. Woodhall and J. E. van der Waals, “Anastomosis groups and pathogenicity of Rhizoctonia solani and binucleate Rhizoctonia from potato in South Africa,” Plant Dis, vol. 99, no. 12, pp. 1790–1802, Dec. 2015. DOI: 10.1094/PDIS-02-15-0236-RE.
  34. E. M. Inokuti, A. Reis, P. C. Ceresini, M. P. S. Câmara and S. J. Michereff “Diversity and pathogenicity of anastomosis groups of Rhizoctonia associated with potato stem canker and black scurf diseases in Brazil”, Eur. Journal of Plant Pathology, 153, 4, 1333–1339, 2018. DOI: 10.1007/s10658-018-01627-5.
  35. S. Gush, N. Muzhinji, M. Truter and J. E. Van der Waals, “First report of Rhizoctonia solani AG 2-2IIIB causing elephant hide on potato tubers in South Africa”, Plant Disease, vol. 103, no. 7, pp. 1–2, 2019. DOI: 10.1094/PDIS-10-18-1850-PDN.
  36. A. Albán, “Identificación, aislamiento, caracterización y evaluación de la capacidad de infección en tubérculos de Rhizoctonia solani de suelos paperos de la provincia de Carchi”, (tesis de grado), Universidad de las Fuerzas Armada – ESPE, Ecuador, 97 p, 2015.
  37. Instituto Colombiano Agropecuario ICA, “Manejo fitosanitario del cultivo de la papa (Solanum tuberosum subsp. andigena y S. phureja), medidas para la temporada invernal”, ICA, Bogotá, Colombia, 35 p, 2011.
  38. E. Chavarro, “Caracterización molecular y análisis de la variabilidad genética de Rhizoctonia solani”, CORPOICA-Manual técnico, pp. 16–30, 2004.
  39. R. L. Ferrucho, P. C. Ceresini, U. M. Ramirez-Escobar, B. A. McDonald, M. A. Cubeta and C. García-Domínguez, “The population genetic structure of Rhizoctonia solani AG-3PT from potato in the Colombian Andes,” Phytopathology, vol. 103, no. 8, pp. 862–869, 2013. DOI: 10.1094/PHYTO-11-12-0278-R.
  40. E. Chavarro-Mesa, N. A. Herrera-Blanco, C. R. Beltrán-Acosta, A. M. Cotes-Prado and J. E. Ángel-Díaz, “Genetic diversity of Rhizoctonia solani AG-3PT, the etiological cause of stem canker and black scurf in Colombian potatoes,” Ciencia Tec. Agropecuaria, vol. 22, no. 3, Sep. 2021. DOI: 10.21930/RCTA.VOL22_NUM3_ART:1888.
  41. L. Tsror, “Biology, epidemiology and management of Rhizoctonia solani on Potato”, Journal of Phytopathology, 158, 649–658, 2010.
  42. R. Ferrucho, M. Cifuentes, P. Ceresini and C. García-Domínguez, “Rhizoctonia solani aG-3PT is the major pathogen associated with potato stem canker and black scurf in colombia,” Agron Colomb, 30, 2, 204–213, 2012.
  43. N. Ariza, J. Ángel y J. Giraldo, “Caracterización molecular y análisis de la variabilidad genética de aislamientos de Rhizoctonia solani Kuhn, en cultivos de papa de Cundinamarca y Nariño”, Universidad INCCA de Colombia, Bogotá, 2003, 121 p.
  44. R. L. Ferrucho, “Construction of pathogenic, biologic and genetic bases of the Colombian populations of Rhizoctonia solani AG-3 necessary for the development of management strategies of stem canker and black scurf diseases of potato”, Tesis doctoral, Fac. Agronomía, Univ. Nacional de Colombia, 114 p, 2011.
  45. H. Navarro-Barranco, “Tipificación genotípica del hongo Metarhizium anisopliae aislado de mosca pinta de los pastos (Homoptera: Cercopidae) en México”, en Memorias del XXIX Congreso Nacional de Control Biológico, Manzanillo, Colima, pp. 541-544, 2006.
  46. G. Griffith & D. Shaw, "Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of ADN from pure cultures or from host lesions”, Applied and Environmental Microbiology, 64, 10, pp. 4007-4014, 1998.
  47. T. White et al., “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," en PCR Protocols and Applications - A Laboratory Manual”, Academic Press, pp. 315-322, 1990.
  48. M. Gardes & T. D. Bruns, “ITS primers with enhanced specificity for Basidiomycetes-application to the identification of mycorrhizae and rusts”, Mol Ecol, vol. 2, pp. 113-118, 1993. DOI: 10.1111/j.1365-294X.1993.tb00005.x.
  49. R. Fenille, M. Ciampi, E. Kuramae and N. Souza, "Identification of Rhizoctonia solani Associated with Soybean in Brazil by rDNA-ITS Sequences”, Fitopatologia Brasileira, 28, 413-419, 2003.
  50. M. Kimura, "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences”, Journal of Molecular Evolution, 16, 111-120, 1980.
  51. Red Biöbancos e Instituto de Salud Carlos III (ISCIII), “Protocolo de extracción de ADN”, Madrid, p 30, 2011.
  52. Universidad de Salamanca, “Programa de control de calidad de ácidos nucleicos. Banco Nacional de ADN Carlos III”, p.10, 2020.
  53. W. Huanca, R. Salvatierra and G. Sepúlveda, “A fast and efficient method for total DNA extraction from soil filamentous fungi”, IDESIA , vol. 32, no. 2, 2014.
  54. D. Lakshman, P. Prakash, V. Singh, P. Sharma and A. Mitra, “Molecular identification, genetic diversity, population genetics and genomics of Rhizoctonia solani.,” 2016. DOI: https://www.researchgate.net/publication/299487816
  55. S. D. Takooree, H. Neetoo, V. M. Ranghoo-Sanmukhiya, S. Hardowar, J. E. van der Waals, V. Vally, A. Gungoosingh Bunwaree, M. Vojvodie and A. Bulajié, “First report of black scurf caused by Rhizoctonia solani AG-3 on potato tubers in Mauritius,” Plant Disease, vol. 105, no. 1. American Phytopathological Society, p. 213, Jan. 01, 2021. DOI: 10.1094/PDIS-06-20-1183-PDN.
  56. M. R. Murdock, J. W. Woodhall, R. Maggard, S. Keith, M. Harrington, A. Oropeza, B. Stokes and K. M. Duellman, "First Report of Rhizoctonia solani AG 2-1 Causing Stem Canker of Potato (Solanum tuberosum) in Idaho," Plant Disease, 2019.
  57. R. Tjimune, E. Mangwende, M. Lekota and N. Muzhinji, “First Report of Rhizoctonia solani AG 3-PT causing black scurf on potato tubers in Namibia,” New Dis Rep, vol. 45, no. 1, Jan. 2022. DOI: 10.1002/ndr2.12066.
  58. A. N. Al-Abedy, F. A. Al-Fadhal, M. H. Karem, Z. Al-Masoudi and S. A. AL-Mamoori, “Genetic variability of different isolates of Rhizoctonia solani Kühn isolated from iranian imported potato tubers (Solanum tuberosum L.),” Inter. Jour. of Agricultural and Statistical Sciences, vol. 14, no. 2, pp. 587–598, 2018.
  59. D. E. Carling et al., “Characterization of anastomosis group 11 (AG-11) of Rhizoctonia solani”, Phytopathology, vol. 84, pp. 1387-1393, 1994.
  60. V. U. Patil, V. Girimalla, V. Sagar, V. Bhardwaj and S. K. Chakrabarti, “Draft Genome Sequencing of Rhizoctonia solani Anastomosis Group 3 (AG3- PT) Causing Stem Canker and Black Scurf of Potato”, American Journal of Potato Research, vol. 95, no. 1, pp. 87–91, Feb. 2018. DOI: 10.1007/s12230-017-9606-0.
  61. M. N. Esfahani, “Genetic variability and virulence of some Iranian Rhizoctonia solani isolates associated with stem canker and black scurf of potato (Solanum tuberosum L.)”, J Plant Prot Res, vol. 60, no. 1, pp. 21–30, 2020. DOI: 10.24425/jppr.2020.132201.
  62. C. Chunmei, W. Xiaojiao, X. Fei and L. Chunxing, “Anastomosis Grup and pathgenicity of Rhizoctonia”, Plant Diseases and Pests, vol. 10, no. 1, pp. 18–23, 2019.
  63. T. Misawa, D. Kurose, M. Mori and T. Toda, “Characterization of Japanese Rhizoctonia solani AG-2-1 isolates using rDNA-ITS sequences, culture morphology, and growth temperature” Journal of General Plant Pathology, vol. 84, no. 6, pp. 387–394, nov. 2018. DOI: 10.1007/s10327-018-0808-1.
  64. I. Kotba1, M. Achouri1, A. Benbouazza, El H. Achbani, A. Ouazzani Touhami and A. Douira, “Morphological, pathogenic and molecular characterisation of Rhizoctonia solani strains isolated from potato” Annual Research & Review in Biology, vol. 29, no. 4, 1-16, 2018. DOI: 10.9734/arrb/2018/44926.
  65. M. Abdel-Sattar, H. El-Marzouky and U. Ibrahim, "Pathogenicity Test and Anastomosis Group of Rhizoctonia solani the Causal Organism of Stem Canker and Black Scurf Disease of Potato in Egypt”, Journal of Applied Plant Protection, vol. 6, no. 1, pp. 1-8, 2017. DOI: 10.21608/japp.2017.7494.
  66. M. Arakawa & K. Inagaki, “Molecular markers for genotyping anastomosis groups and understanding the population biology of Rhizoctonia species”, Journal of General Plant Pathology, vol. 80, no. 5, pp. 401–407, 2014. DOI: 10.1007/s10327-014-0536-0.
  67. M. Matsumoto, "Trials of direct detection and identification of Rhizoctonia solani AG-1 and AG-2 subgroups using specifically primed PCR análisis”, Mycoscience, 43, 185-189, 2002.
  68. L. Iradukunda, Y.-P. Wang, O. Nkurikiyimfura, T. Wang, L.-N. Yang and J. Zhan, “Establishment and Application of a Multiplex PCR Assay for the Rapid Detection of Rhizoctonia solani Anastomosis Group (AG)-3PT, the Pathogen Causing Potato Black Scurf and Stem Canker”, Pathogens, vol. 11, p. 627, May 2022. DOI: 10.3390/pathogens11060627.
  69. D. Carling, S. Kuninaga and K. Brainard, “Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI”, Phytopathology, vol. 92, no. 1, pp. 43–50, 2002. DOI: 10.1094/PHYTO.2002.92.1.43.
  70. S. Kuninaga, D. Carling, T. Takeuchi and T. Yokosawa, “Comparison of rDNA-ITS Sequences between Potato and Tobacco Strains in Rhizoctonia solani AG-3”, J. Gen. Plant Pathol, vol. 66, pp. 2–11, 2000.
  71. N. Muzhinji, W. Woodhall, M. Truter and J. Van der Waals, “Population genetic structure of Rhizoctonia solani AG 3-PT from potatoes in South Africa”, Fungal Biology, vol. 120, no. 5, pp. 701–710, 2016. DOI: 10.1016/j.funbio.2016.02.009.
  72. N. Muzhinji, J. Woodhall, M. Truter and J. Van der Waals, "Relative contribution of seed tuber- and soilborne inoculum to potato disease development and changes in the population genetic structure of Rhizoctonia solani AG 3-PT under field conditions in South Africa”, Plant Disease, vol. 102, no. 1, pp. 60–66, 2018. DOI: 10.1094/PDIS-03-17-0329-RE.
  73. S. Kumar, G. Stecher, M. Li, C. Knyaz and K. Tamura, “MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms”, Molecular Biology and Evolution, vol. 35, pp. 1547-1549, 2018.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.