Skip to main navigation menu Skip to main content Skip to site footer

Crystallographic, morphologic, electric, optical and magnetic analysis of the Dy2BiFeO6 novel material

Abstract

We report structural analysis, surface morphology, magnetic ordering, dielectric response, optical feature and the electronic structure of the Dy2BiFeO6 novel complex perovskite. The samples were produced by the standard solid-state reaction recipe. Crystallographic analysis was performed by Rietveld refinement of experimental X-ray diffraction patterns. Results show that this material crystallizes in a perovskite with orthorhombic structure, which corresponds to the Pnma (#62) space group. From the Curie-Weiss fitting on the curve of susceptibility as a function of temperature we establish that the ordering corresponds to a paramagnetic-antiferromagnetic transition, with a Weiss temperature q=-18,5 K, which is compatible with the behavior of the inverse of susceptibility as a function of temperature, and a Néel temperatura TN=50,8 K. The Curie constant allowed for us to obtain an effective magnetic moment of 15,7 mB. The result of magnetization as a function of the applied field, measured at T=50 K, shows a magnetic hysteresis behavior that corroborate the magnetic ordering present for this temperature value. Measurements of the dielectric constant as a function of applied frequencies at room temperature give as a result a high relative dielectric constant (e=780). The reflectance curve as a function of the wavelength reveals the typical behavior of a double perovskite-like material and permits to obtain the energy gap 2,74 eV, which is characteristic of a semiconductor material.

Keywords

New material, Perovskita, Structur, Magnetic answer

PDF (Español)

References

  1. P. Garcia-Fernandez, J.A. Aramburu, M.T. Barriuso, M. Moreno. Key Role of Covalent Bonding in Octahedral Tilting in Perovskites, Journal of Physical Chemistry Letters 1, 647-651 (2010). DOI: https://doi.org/10.1021/jz900399m
  2. R.M. Hazen. Perovskites, Scientific American 258, 74-81 (1988). DOI: https://doi.org/10.1038/scientificamerican0688-74
  3. Q. Madueño, D.A. Landínez Téllez, J. Roa-Rojas. Production and characterization of Ba2NdSbO6 complex perovskite as a substrate for YBa2Cu3O7-δ superconducting films, Modern Physics Letters B 20, 427-437 (2006). DOI: https://doi.org/10.1142/S021798490601069X
  4. J. A. Cuervo Farfán, D. M. Aljure García, R. Cardona, J. Arbey Rodríguez, D.A. Landínez Téllez, J. Roa-Rojas. Structure, Ferromagnetic, Dielectric and Electronic Features of the LaBiFe2O6 Material, Journal of Low Temperature Physics Volume 186, 295–315 (2017). DOI: https://doi.org/10.1007/s10909-016-1714-6
  5. Y-Q. Zhai, J. Qiao, Z. Zhang. Magnetic and Electrical Transport Properties of Double Perovskite Sr2FeMoO6 Prepared by Sol-Gel Method, E-Journal of Chemistry 8, S189-S194 (2011). DOI: https://doi.org/10.1155/2011/984862
  6. B. Raveau, A. Maignan, C. Martin, M. Hervieu. Colossal Magnetoresistance Manganite Perovskites: Relations between Crystal Chemistry and Properties, Chemistry of Materials 10, 2641–2652 (1998). DOI: https://doi.org/10.1021/cm9801791
  7. DA Landínez Téllez, G. Peña-Rodríguez, F. Fajardo, J. Arbey Rodríguez, J. Roa-Rojas. Structural, magnetic, multiferroic, and electronic properties of Sr2TiMnO6 double perovskite, DYNA 79, 111-115 (2012).
  8. J. Sánchez-Benítez, M.J. Martínez-Lope, J.A. Alonso, J.L. García-Muñoz. Magnetic and structural features of the NdNi1−xMnxO3 perovskite series investigated by neutron diffraction, Journal of Physics: Condensed Matter, 23, 226001 (2011). DOI: https://doi.org/10.1088/0953-8984/23/22/226001
  9. M. Bonilla, D.A. Landínez Téllez, J.A. Rodríguez, J.A. Aguiar, J. Roa-Rojas. Study of half-metallic behavior in Sr2CoWO6 perovskite by ab initio DFT calculations, Journal of Magnetism and Magnetic Materials 320, e397-e399 (2008). DOI: https://doi.org/10.1016/j.jmmm.2008.02.179
  10. Iván Supelano García, Armando Sarmiento Santos, Armando Sarmiento Santos, Carlos Arturo Parra Vargas, Carlos Arturo Parra Vargas, David Landínez Téllez, David Landínez Téllez, Jairo Roa Rojas. Síntesis y propiedades estructurales del sistema superconductor La1,5+xBa1,5+x−yCayCu3Oz, Ciencia en Desarrollo 4, 27-32 (2013).
  11. D.A. Landínez Téllez, L.A. Carrero Bermúdez, C.E. Deluque Toro, R. Cardona J. Roa-Rojas. Cristalographic, Ferroelectric and Electronic Properties of the Sr2ZrTiO6 Double Perovskite, Modern Physics Letters B 27, 13501041 (2013). DOI: https://doi.org/10.1142/S0217984913501418
  12. B. Aktaş, F. Mikailzade, B. Rameev, N. Akdoğan. Recent advances in nanomagnetism and spintronics, Journal of Magnetism and Magnetic Materials 373, 1 (2015). DOI: https://doi.org/10.1016/j.jmmm.2014.08.093
  13. Y. Tokura, N. Kida. Dynamical magnetoelectric effects in multiferroic oxides, Philosophical Transactions of the Royal Society A 369, 3679–3694 (2011). DOI: https://doi.org/10.1098/rsta.2011.0150
  14. M.M. Vopson. Fundamentals of Multiferroic Materials and Their Possible Applications, Journal Critical Reviews in Solid State and Materials Sciences 40, 223-250, 2015. DOI: https://doi.org/10.1080/10408436.2014.992584
  15. B. Rajeswaran, D. Sanyal, Mahuya Chakrabarti, Y. Sundarayya, A. Sundaresan, C. N. R. Rao. Interplay of 4f-3d magnetism and ferroelectricity in DyFeO3, Europhysics Letters 101, 17001 (2013). DOI: https://doi.org/10.1209/0295-5075/101/17001
  16. V. Kumar, S. Kr. Sharma, T.P. Sharma, V. Singh. Band gap determination in thick films from reflectance measurements, Optical Materials 12 115-119 (1999). DOI: https://doi.org/10.1016/S0925-3467(98)00052-4
  17. C.J. Howard, H.T. Stokes. Group-Theoretical Analysis of Octahedral Tilting in Perovskites, Acta Crystalographica B 54, 782-789 (1998). DOI: https://doi.org/10.1107/S0108768198004200
  18. C.A. Triana, D.A. Landínez Téllez, J. Roa-Rojas. General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite, Materials Characterization 99, 128-141 (2015). DOI: https://doi.org/10.1016/j.matchar.2014.11.021
  19. F. Schröder, N. Bagdassarov, F. Ritter, L. Bayarjargal. Temperature dependence of Bi2O3 structural parameters close to the α-δ phase transition, Phase Transitions, 83, 311-325 (2010). DOI: https://doi.org/10.1080/01411591003795290
  20. B.K. Choudhuray, K.V. Rao, R.N.P. Choudhary. Dielectric properties of SrTiO3 single crystals subjected to high electric fields and later irradiated with X-rays orγ-rays, Journal of Materials Science 24, 3469-3474 (1989). DOI: https://doi.org/10.1007/BF02385726
  21. P.R. Arya, P. Jha, G.N. Subbanna, A.K. Ganguli. Polymeric citrate precursor route to the synthesis of nano-sized barium lead titanates, Materials Research Bulletin 38, 617-628 (2003). DOI: https://doi.org/10.1016/S0025-5408(03)00007-2
  22. S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Computational Materials Science 29, 165-178 (2004). DOI: https://doi.org/10.1016/j.commatsci.2003.08.036
  23. M.M. Vijatović, J.D. Bobić, B.D. Stojanović. History and Challenges of Barium Titanate: Part II, Science of Sintering 40, 235-244 (2008). DOI: https://doi.org/10.2298/SOS0803235V

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.