Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efecto de Lactobacillus lactis microencapsulado sobre Klebsiella pneumoniae bajo condiciones gastrointestinales in-vitro

Resumen

K. pneumoniae se encuentra de forma nativa en los tractos respiratorio y gastrointestinal de humanos, animales domésticos y salvajes con posibles vínculos zoonóticos. está comúnmente asociada con infecciones nosocomiales y se ha reportado en algunos alimentos como vector de transmisión. Los Lactobacillus se consideran una alternativa preventiva para al uso de antibióticos en salud animal y humana, gracias a la producción de ácido láctico, ácidos orgánicos, exopolisacáridos (EPS) y metabolitos secundarios con propiedades antibacterianas, antioxidantes, reológicas y conservación de alimentos. El objetivo de la investigación es evaluar el potencial inhibitorio de Lactobacillus lactis microencapsulado mediante secado por aspersión sobre Klebsiella pneumoniae bajo condiciones gastrointestinales in-vitro. Se realizan pruebas como producción de gas, actividad de catalasa, crecimiento a diferente temperatura, cinética de fermentación, microencapsulación de la cepa láctica, estudio estructural del material microencapsulado, supervivencia en condiciones gastrointestinales in-vitro y pruebas de inhibición de L. lactis sobre K. pneumoniae. Los resultados indican efecto protector del microencapsulado sobre L. lactis, respuesta inhibitoria de la cepa láctica sobre K. pneumoniae.

Palabras clave

Klebsiella pneumoniae, Lactobacillus, microencapsulación, salud humana, salud animal, zoonosis

PDF

Citas

  1. G. Wareth and H. Neubauer, “The Animal-foods-environment interface of Klebsiella pneumoniae in Germany: an observational study on pathogenicity, resistance development and the current situation,” Vet. Res., vol. 52, no. 1, pp. 1–14, 2021, doi: 10.1186/s13567-020-00875-w.
  2. K. Junaid, H. Ejaz, S. Younas, A. Alanazi, H. Yasmeen, and A. Rehman, “Detection of Klebsiella pneumoniae antibiotic-resistant genes: An impending source of multidrug resistance dissemination through raw food,” Saudi J. Biol. Sci., vol. 29, no. 5, pp. 3347–3353, 2022, doi: 10.1016/j.sjbs.2022.02.020.
  3. E. Mario, D. Hamza, and K. Abdel-Moein, “Hypervirulent Klebsiella pneumoniae among diarrheic farm animals: A serious public health concern,” Comp. Immunol. Microbiol. Infect. Dis., vol. 102, no. October, p. 102077, 2023, doi: 10.1016/j.cimid.2023.102077.
  4. S. H. P. Hartantyo et al., “Foodborne klebsiella pneumoniae: Virulence potential, antibiotic resistance, and risks to food safety,” J. Food Prot., vol. 83, no. 7, pp. 1096–1103, 2020, doi: 10.4315/JFP-19-520.
  5. J. A. Bengoechea and J. Sa Pessoa, “Klebsiella pneumoniae infection biology: Living to counteract host defences,” FEMS Microbiol. Rev., vol. 43, no. 2, pp. 123–144, 2019, doi: 10.1093/femsre/fuy043.
  6. A. L. Morales-Ubaldo, N. Rivero-Perez, B. Valladares-Carranza, V. Velázquez-Ordoñez, L. Delgadillo-Ruiz, and A. Zaragoza-Bastida, “Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches,” Vet. Anim. Sci., vol. 21, no. July, 2023, doi: 10.1016/j.vas.2023.100306.
  7. S. Fu et al., “Molecular Epidemiology and Antimicrobial Resistance of Outbreaks of Klebsiella pneumoniae Clinical Mastitis in Chinese Dairy Farms,” Microbiol. Spectr., vol. 10, no. 6, 2022, doi: 10.1128/spectrum.02997-22.
  8. F. E. Montúfar-Andrade et al., “Experiencia clínica con infecciones causadas por Klebsiella pneumoniae productora de carbapenemasa, en una institución de enseñanza universitaria en Medellín, Colombia,” Infectio, vol. 20, no. 1, pp. 17–24, 2016, doi: 10.1016/j.infect.2015.07.003.
  9. F. Esposito et al., “Expansion of healthcare-associated hypervirulent KPC-2-producing Klebsiella pneumoniae ST11/KL64 beyond hospital settings,” One Heal., vol. 17, 2023, doi: 10.1016/j.onehlt.2023.100594.
  10. J. S. Yu et al., “ Lactobacillus lactis and Pediococcus pentosaceus ‐driven reprogramming of gut microbiome and metabolome ameliorates the progression of non‐alcoholic fatty liver disease ,” Clin. Transl. Med., vol. 11, no. 12, 2021, doi: 10.1002/ctm2.634.
  11. M. A. Almalki, “Exopolysaccharide production by a new Lactobacillus lactis isolated from the fermented milk and its antioxidant properties,” J. King Saud Univ. - Sci., vol. 32, no. 2, pp. 1272–1277, Mar. 2020, doi: 10.1016/J.JKSUS.2019.11.002.
  12. M. Wirunpan, W. Savedboworn, and P. Wanchaitanawong, “Survival and shelf life of Lactobacillus lactis 1464 in shrimp feed pellet after fluidized bed drying,” Agric. Nat. Resour., vol. 50, no. 1, pp. 1–7, 2016, doi: 10.1016/j.anres.2016.01.001.
  13. R. M. Jones, “The Microbiota in Gastrointestinal Pathophysiology The Use of Lactobacillus casei and Lactobacillus paracasei in Clinical Trials for the Improvement of Human Health,” in The Microbiota in Gastrointestinal Pathophysiology, 2017, pp. 99–108. doi: 10.1016/B978-0-12-804024-9/00009-4.
  14. H. A. El-Enshasy and S.-T. Yang, Probiotics, the Natural Microbiota in Living Organisms, 1st ed. CRC Press, 2021. doi: 10.1201/9781351027540.
  15. E. J. Zambrano-Mora and H. Jurado-Gámez, “Efecto de Lactobacillus casei microencapsulado sobre la salud intestinal y parámetros bioquímicos y productivos en pollo de engorde TT - Effect of microencapsulated Lactobacillus casei on intestinal health and on biochemical and productive parameters in,” Rev. Udca Actual. Divulg. Cient, vol. 23, no. 2, pp. e1480–e1480, 2020, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&amp%0Apid=S0123-42262020000200017
  16. C. Yang, L. Liu, J. K. Majaw, L. Liang, and Y. Chen, “Efficacy of Lactobacillus reuteri supplementation therapy for Helicobacter pylori eradication: A meta-analysis of randomised controlled trials,” Med. Microecol., p. 100036, Jul. 2021, doi: 10.1016/J.MEDMIC.2021.100036.
  17. C. Fajardo-Argoti, H. Jurado-Gámez, and J. Parra-Suescún, “Viabilidad de Lactobacillus plantarum microencapsulado bajo condiciones gastrointestinales simuladas e inhibición sobre Escherichia coli O157:H7 Viability of microencapsulated Lactobacillus plantarum under simulated gastrointestinal conditions and inhibit,” Rev. U.D.C.A Actual. Divulg. Científica, vol. 24, 2021, doi: 10.31910/rudca.v24.n1.2021.1733.
  18. H. A. Jurado-Gámez, E. J. Zambrano-Mora, and A. Pazos-Moncayo, “Adición de un probiótico de Lactobacillus plantarum microencapsulado en el alimento para pollos,” Univ. y Salud, vol. 23, no. 2, pp. 151–161, Apr. 2021, doi: 10.22267/RUS.212302.227.
  19. S. Divyashree, R. Ramu, and M. Y. Sreenivasa, “Evaluation of new candidate probiotic lactobacillus strains isolated from a traditional fermented food- multigrain-millet dosa batter,” Food Biosci., vol. 57, no. December 2023, p. 103450, 2024, doi: 10.1016/j.fbio.2023.103450.
  20. M. Popović et al., “Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers,” Int. J. Biol. Macromol., vol. 183, pp. 423–434, 2021, doi: 10.1016/j.ijbiomac.2021.04.177.
  21. R. B. Cuvas-Limón, P. Ferreira-Santos, M. Cruz, J. A. Teixeira, R. Belmares, and C. Nobre, “Novel Bio-Functional Aloe vera Beverages Fermented by Probiotic Enterococcus faecium and Lactobacillus lactis,” Molecules, vol. 27, no. 8, pp. 1–23, 2022, doi: 10.3390/molecules27082473.
  22. M. M. Essa et al., “Functional foods and their impact on health,” J. Food Sci. Technol., vol. 60, no. 3, 2023, doi: 10.1007/s13197-021-05193-3.
  23. S. Vimon, K. Angkanaporn, and C. Nuengjamnong, “Microencapsulation of Lactobacillus plantarum MB001 and its probiotic effect on growth performance , cecal microbiome and gut integrity of broiler chickens in a tropical climate,” Anim. Boiscience, vol. 36, no. 8, pp. 1252–1262, 2023, doi: doi.org/10.5713/ab.22.0426.
  24. L. Li et al., “Microencapsulation protected Lactobacillus viability and its activity in modulating the intestinal microbiota in newly weaned piglets,” J. Anim. Sci., vol. 101, p. skad193, Jan. 2023, doi: 10.1093/jas/skad193.
  25. Q. Guo et al., “Microencapsulation of Lactobacillus plantarum by spray drying: Protective effects during simulated food processing, gastrointestinal conditions, and in kefir,” Int. J. Biol. Macromol., vol. 194, pp. 539–545, 2022, doi: 10.1016/j.ijbiomac.2021.11.096.
  26. L. K. Sarao and M. Arora, “Probiotics , prebiotics , and microencapsulation : A review,” Crit. Rev. Food Sci. Nutr., vol. 57, no. 2, pp. 344–371, 2017, doi: 10.1080/10408398.2014.887055.
  27. A. Brodkorb et al., “INFOGEST static in vitro simulation of gastrointestinal food digestion,” Nat. Protoc., vol. 14, no. 4, pp. 991–1014, Mar. 2019, doi: 10.1038/s41596-018-0119-1.
  28. E. G. Melara, M. C. Avellaneda, M. Valdivié, Y. García-Hernández, R. Aroche, and Y. Martínez, “Probiotics: Symbiotic Relationship with the Animal Host,” Animals, vol. 12, no. 6, pp. 1–26, 2022, doi: 10.3390/ani12060719.
  29. Y. Cai, S. Puangpen, S. Premsuda, and Y. Benno, “Classification and characterization of lactic acid bacteria isolated from the intestines of common carp and freshwater prawns,” J. Gen. Appl. Microbiol., vol. 45, no. 4, pp. 177–184, 1999, doi: 10.2323/JGAM.45.177.
  30. M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances,” Anal. Chem., vol. 28, no. 3, pp. 350–356, Mar. 1956, doi: 10.1021/AC60111A017/ASSET/AC60111A017.FP.PNG_V03.
  31. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “PROTEIN MEASUREMENT WITH THE FOLIN PHENOL REAGENT*,” J Biol Chem., vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/S0021-9258(19)52451-6.
  32. W. Crueger and A. Crueger, Industrial microbiology manual. Zaragoza España: Acribia, 1993.
  33. Y. A. Rodríguez, A. F. Rojas, and S. Rodríguez, “ENCAPSULACIÓN DE PROBIÓTICOS PARA APLICACIONES ALIMENTICIAS,” Rev. Biosalud, vol. 15, no. 2, 2016, doi: 10.17151/biosa.2016.15.2.10.
  34. H. A. Jurado-Gámez, J.-F. Cerón-Córdoba, and J. C. Bolaños-Bolaños, “Effect of microencapsulated Lactobacillus reuteri under simulated gastric conditions and its inhibition on Listeria monocytogenes,” Rev. Ciencias Agrícolas, vol. 40, no. 1, p. e1202, 2023, doi: 10.22267/rcia.20234001.202.
  35. C. J. Mejía, “EFECTO DE LAS BACTERIOCINAS DE BACTERIAS ÁCIDO LÁCTICAS PROVENIENTES DE YOGURT PROBIÓTICO SOBRE EL CRECIMIENTO DE Salmonella spp Y Staphylococcus aureus,” Universidad Nacional de Cajamarca, Cajamarca, 2022. Accessed: Apr. 28, 2023. [Online]. Available: http://hdl.handle.net/20.500.14074/5362
  36. T. T. Freire, A. L. T. e Silva, B. K. O. Ferreira, and T. M. dos Santos, “Lactic acid bacteria its characteristics and importance: review,” Res. Soc. Dev., vol. 10, no. 11, pp. e513101119964–e513101119964, Sep. 2021, doi: 10.33448/RSD-V10I11.19964.
  37. N. Hadinia, M. R. Edalatian Dovom, and M. Yavarmanesh, “The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids,” Food Sci. Technol., vol. 165, no. June, p. 113709, 2022, doi: 10.1016/j.lwt.2022.113709.
  38. M. Culumber et al., “Hot topic: Geographical distribution and strain diversity of Lactobacillus wasatchensis isolated from cheese with unwanted gas formation,” J. Dairy Sci., vol. 100, no. 11, pp. 8764–8767, 2017, doi: 10.3168/jds.2017-13375.
  39. L. Sánchez, M. Omura, A. Lucas, T. Pérez, and C. de L. Ferreira, “Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos,” Rev. Salud Anim., vol. 37, no. 2, pp. 94–104, May 2015, Accessed: Aug. 11, 2022. [Online]. Available: http://scielo.sld.cu/pdf/rsa/v37n2/rsa04215.pdf
  40. L. Zhang, B. Zhao, C. J. Liu, and E. Yang, “Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test,” Indian J. Microbiol., vol. 60, no. 3, p. 335, Sep. 2020, doi: 10.1007/S12088-020-00865-8.
  41. J. A. Mora-Villalobos et al., “Multi-Product Lactic Acid Bacteria Fermentations: A Review,” Fermentation, vol. 6, no. 23, p. 21, 2020, doi: 10.3390/fermentation6010023.
  42. S. Roldán Pérez et al., “Assessment of probiotic properties of lactic acid bacteria isolated from an artisanal Colombian cheese,” Build. Environ., vol. 23, p. 27, 2023, doi: 10.1016/j.heliyon.2023.e21558.
  43. B. Alizadeh Behbahani, M. Noshad, and F. Falah, “Inhibition of Escherichia coli adhesion to human intestinal Caco-2 cells by probiotic candidate Lactobacillus plantarum strain L15,” Microb. Pathog., vol. 136, 2019, doi: 10.1016/j.micpath.2019.103677.
  44. F. Minervini and M. Calasso, “Lactobacillus casei Group,” Encycl. Dairy Sci. Third Ed., vol. 4, pp. 275–286, Jan. 2016, doi: 10.1016/B978-0-08-100596-5.00853-2.
  45. J. Hu, J. H. Park, and I. H. Kim, “Effect of dietary supplementation with Lactobacillus plantarum on growth performance, fecal score, fecal microbial counts, gas emission and nutrient digestibility in growing pigs,” Anim. Feed Sci. Technol., vol. 290, no. November 2019, p. 115295, 2022, doi: 10.1016/j.anifeedsci.2022.115295.
  46. M. M. Alvarez, E. J. Aguirre-Ezkauriatza, A. Ramírez-Medrano, and Á. Rodríguez-Sánchez, “Kinetic analysis and mathematical modeling of growth and lactic acid production of Lactobacillus casei var. rhamnosus in milk whey,” J. Dairy Sci., vol. 93, no. 12, pp. 5552–5560, 2010, doi: 10.3168/jds.2010-3116.
  47. B. Goranov, R. Denkova-Kostova, Z. Denkova, and G. Kostov, “Growth kinetics of probiotic lactobacilli strains cultivated in a laboratory bioreactor with stirring,” BIO Web Conf., vol. 58, pp. 3–7, 2023, doi: 10.1051/bioconf/20235802003.
  48. D. A. Romero-Benavides, J. A. Morillo-Garces, and H. A. Jurado-Gámez, “INHIBICIÓN DE Lactobacillus gasseri SOBRE Yersinia pseudotuberculosis BAJO CONDICIONES IN VITRO,” Rev. la Fac. Med. Vet. y Zootec., vol. 63, no. 2, pp. 95–112, May 2016, doi: 10.15446/RFMVZ.V63N2.59357.
  49. F. Cheng, H. Chen, N. Lei, M. Zhang, and H. Wan, “EFFECTS OF CARBON AND NITROGEN SOURCES ON ACTIVITY OF CELL ENVELOPE PROTEINASE PRODUCED BY LACTOBACILLUS PLANTARUM LP69-Research paper,” Acta Univ. Cibiniensis Ser. E FOOD Technol., vol. 23, no. 1, pp. 11–19, 2019, doi: 10.2478/aucft-2019-0002.
  50. N. A. Bolivar-Jacobo et al., “Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus,” Fermentation, vol. 9, no. 1, 2023, doi: 10.3390/fermentation9010063.
  51. H. Jurado-Gámez, J. Martínez-Benavides, J. A. Morillo-Garcés, A. E. Orbes-Villacorte, and L. N. Mesías-Pantoja, “Cinética de fermentación, pruebas de desafío in vitro y efecto de inhibición de Lactobacillus gasseri ATCC 19992,” Vet. y Zootecnía, vol. 10, no. 2, pp. 72–89, Dec. 2016, Accessed: Aug. 22, 2022. [Online]. Available: http://vip.ucaldas.edu.co/vetzootec/downloads/v10n2a07.pdf
  52. M. Wu et al., “Kinetic modeling of gamma-aminobutyric acid production by Lactobacillus brevis based on pH-dependent model and rolling correction,” Chinese J. Chem. Eng., vol. 50, pp. 352–360, 2022, doi: 10.1016/j.cjche.2022.05.021.
  53. M. Yin, M. Chen, Y. Yuan, F. Liu, and F. Zhong, “Encapsulation of Lactobacillus rhamnosus GG in whey protein isolate-shortening oil and gum Arabic by complex coacervation: Enhanced the viability of probiotics during spray drying and storage,” Food Hydrocoll., vol. 146, no. September 2023, 2024, doi: 10.1016/j.foodhyd.2023.109252.
  54. K. Sarabandi, S. M. Jafari, A. S. Mahoonak, and A. Mohammadi, “Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source,” Int. J. Biol. Macromol., vol. 140, pp. 59–68, 2019, doi: 10.1016/j.ijbiomac.2019.08.133.
  55. M. Sultana, E. S. Chan, P. Janarthanan, and W. S. Choo, “Functional orange juice with Lactobacillus casei and tocotrienol-enriched flaxseed oil co-encapsulation: Physicochemical properties, probiotic viability, oxidative stability, and sensorial acceptability,” Lwt, vol. 188, no. October, 2023, doi: 10.1016/j.lwt.2023.115388.
  56. W. Chen, LacticAcid Bacteria and Fermented Meat Products. Singapore: Springer, 2019. doi: 10.1007/978-981-13-7283-4.
  57. H. Thatoi, P. K. Das Mohapatra, S. Mohapatra, and K. C. Mondal, Microbial Fermentation and Enzyme Technology. CRC Press, 2020. doi: 10.1201/9780429061257.
  58. E. González et al., “Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion,” Food Chem., vol. 310, p. 125976, Apr. 2020, doi: 10.1016/J.FOODCHEM.2019.125976.
  59. A. A. Vázquez-Ortiz, Vázquez-Ovando. Alfredo, S. Ruiz-González, G. López-Martínez, M. G. Gyves-Córdova, and J. D. Mejía-Reyes, “Capacidad probiótica preliminar de bacterias ácido lácticas aisladas de diferentes fuentes,” IBCIENCIAS, vol. 5, no. 2, pp. 18–25, 2022, Accessed: Apr. 28, 2023. [Online]. Available: https://www.researchgate.net/publication/368634761
  60. X. Xu et al., “Antibacterial potential of a novel Lactobacillus casei strain isolated from Chinese northeast sauerkraut and the antibiofilm activity of its exopolysaccharides,” Food Funct., vol. 11, no. 5, pp. 4697–4706, May 2020, doi: 10.1039/D0FO00905A.
  61. Y. L. P. López, R. Torres-Rosas, and L. Argueta-Figueroa, “Mecanismos de acción de los probióticos en la inhibicion de los microorganismos cariogénicos,” Rev. Medica Clin. Las Condes, vol. 34, no. 3, pp. 216–223, 2023, doi: 10.1016/j.rmclc.2023.03.010.
  62. K. Khongkool, B. Prakit, R. Chaiyod, W. Chanasit, and M. Lertworapreecha, “Gamma-Aminobutyric Acid (GABA) Producing Lactobacillus plantarum TSUB-17 and Probiotic Properties for Using as Probiotics Additive in Swine Feed,” Trends Sci., vol. 21, no. 1, pp. 1–10, 2024, doi: 10.48048/tis.2024.7198.
  63. J. R. Liu et al., “Fingerprinting and characterization of the polysaccharides from Polygonatum odoratum and the in vitro fermented effects on Lactobacillus johnsonii,” J. Pharm. Biomed. Anal., vol. 239, no. October 2023, pp. 1–12, 2024, doi: 10.1016/j.jpba.2023.115911.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 > >> 

También puede {advancedSearchLink} para este artículo.