Propiedades ópticas, eléctricas, estructurales y morfológicas de arcilla mineral KAl4Si2O12/Mg3Si2O9/Fe2O3 de la región montañosa de Machado, Tarairá, Colombia

Autores/as

  • Édgar Felipe Galíndez Ruales
  • José Alejandro Rojas Venegas
  • Diego Sánchez
  • David A. Landínez Téllez
  • Jairo Roa-Rojas Universidad Nacional de Colombia http://orcid.org/0000-0002-5080-8492

DOI:

https://doi.org/10.19053/01217488.v13.n1.2022.12884

Palabras clave:

Arcillas; caracterización óptica; morfología; propiedades eléctricas

Resumen

Las propiedades físicas de los minerales arcillosos son esenciales en la evaluación de aplicaciones y nuevos usos potenciales de materiales geológicos. Este estudio presenta resultados de análisis óptico, eléctrico, estructural, composicional y morfológico de mineral de arcilla Illita (0.967) / Clorita (0.013) / Hematita (0.02) extraído de la región montañosa de Machado en el municipio de Tarairá, departamento de Vaupés, Colombia. La arcilla extraída fue sometida a tratamientos para separarla de los demás compuestos geológicos antes del proceso de caracterización. La morfología laminar observada permitió realizar un análisis de tamaño de grano que confirmó la extracción de arcilla. Se encontraron partículas con un diámetro de 0,8 a 1,4 mm y dos pseudo-modos de distribución en el histograma de áreas. Se supone que la distribución bimodal se debe a las diferencias entre las edades periódicas de formación de los minerales en la región de extracción. Estructuralmente, encontramos una estructura monoclínica con residuos de estructuras segregadas polimorfas triclínicas y escalenoédricas hexagonales. El análisis XRD se basó en las medidas de EDS, dada la estequiometría de la muestra. Además, se encontró una gran absorción en el rango óptico UV con un intervalo de banda efectivo en la arcilla a 2.852 (8) eV. Las propiedades eléctricas de la arcilla mostraron un fuerte comportamiento aislante no lineal. Las pérdidas eléctricas por polarización de la muestra fueron disminuidas por un calentamiento previo. Finalmente, el análisis completo de las propiedades físicas permitió introducir este material como un aislante económico y eficiente en el tiempo.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

I. Bibi, J. Icenhower, N. Niazi, T. Naz, M. Shahid, S. Bashir, Clay minerals, in: Environmental Materials and Waste, Elsevier, 2016, pp. 543–567. DOI: https://doi.org/10.1016/B978-0-12-803837-6.00021-4

H. H. Murray, Chapter 2 structure and composition of the clay minerals and their physical and chemical properties, in: Developments in Clay Science, Elsevier, 2006, pp. 7–31. DOI: https://doi.org/10.1016/S1572-4352(06)02002-2

I. S. Khurana, S. Kaur, H. Kaur, R. K. Khurana, Multifaceted role of clay minerals in pharmaceuticals, Future Science OA 1 (2015). DOI: https://doi.org/10.4155/fso.15.6

T. Thiebault, R. Gue´gan, M. Boussafir, Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products, Journal of Colloid and Interface Science 453, 1–8 (2015). DOI: https://doi.org/10.1016/j.jcis.2015.04.029

M. Massaro, C. Colletti, G. Lazzara, S. Riela, The use of some clay minerals as natural resources for drug carrier applications, Journal of Functional Biomaterials 9, 58 (2018). DOI: https://doi.org/10.3390/jfb9040058

D. Landinez, M. Calvo, C. Cárdenas, Caracterización de material arcilloso obtenido del rio Guaviare, vereda de La Paz, Colombia, Boletín de Ciencias de la Tierra 31 – 37 (2018). DOI: https://doi.org/10.15446/rbct.n44.63248

S. C. A. Mana, M.M. Hanafiah, A. J. K. Chowdhury, Environmental characteristics of clay and clay-basedminerals, 254 Geology, Ecology, and Landscapes 1, 155–161 (2017). DOI: https://doi.org/10.1080/24749508.2017.1361128

A. Ariizumi, Clay in construction technology, Journal of the Clay Science Society of Japan (in Japanese) 17 256, 191–198 (1977).

J. F. Burst, The application of clay minerals in ceramics, Applied Clay Science 5, 421–443 (1991). DOI: https://doi.org/10.1016/0169-1317(91)90016-3

A. Bennour, S. Mahmoudi, E. Srasra, S. Boussen, N. Htira, Composition, firing behavior and ceramic properties 259 of the sejne`ne clays (northwest tunisia), Applied Clay Science 115, 30–38 (2015). DOI: https://doi.org/10.1016/j.clay.2015.07.025

O. M. Castellanos A., C. A. Rios R., M. A. Ramos G., E. V. Plaza P., A comparative study of mineralogical transformations in fired clays from the Valle Laboyos, Alto Magdalena basin (Colombia), Boletin de Geología 34, 43 – 55 (2012).

J. Vukovic´, Keramicke studije i arheometrija: izmeju analiza prirodnih nauka i arheoloske interpretacije, Issues in 264 Ethnology and Anthropology 12, 683 (2017).

G. Rytwo, Clay minerals as an ancient nanotechnology: Historical uses of clay organic interactions, and future 266 possible perspectives, Macla: Revista de la Sociedad Española de Mineralogía (2008).

Z. L. E. Ntah, R. Sobott, B. Fabbri, K. Bente, Characterization of some archaeological ceramics and clay samples from Zamala - Far-northern part of Cameroon (West Central Africa), Ceramica 63, 413 – 422 (2017). DOI: https://doi.org/10.1590/0366-69132017633672192

M. A. Neupert, Clays of contention: An ethnoarchaeological study of factionalism and clay composition, Journal of Archaeological Method and Theory 7, 249–272 (2000). DOI: https://doi.org/10.1023/A:1026562604895

H. Hashizume, Role of clay minerals in chemical evolution and the origins of life, in: Clay Minerals in Nature - Their Characterization, Modification and Application, InTech, 2012, pp. 191–208. DOI: https://doi.org/10.5772/50172

H. Hashizume, Adsorption of nucleic acid bases, ribose, and phosphate by some clay minerals, Life 5, 637–650 (2015). DOI: https://doi.org/10.3390/life5010637

A. B. Subramaniam, J. Wan, A. Gopinath, H. A. Stone, Semi-permeable vesicles composed of natural clay, Soft Matter 7, 2600 (2011). DOI: https://doi.org/10.1039/c0sm01354d

H. Cripps, N. Isaias, A. Jowett, The use of clays as an aid to water purification, Hydrometallurgy 1, 373–387 (1976). DOI: https://doi.org/10.1016/0304-386X(76)90038-4

F. Aziz, N. Ouazzani, L.Mandi,M.Muhammad, A. Uheida, Composite nanofibers of polyacrylonitrile/natural clay for decontamination of water containing pb(II), cu(II), zn(II) and pesticides, Separation Science and Technology 52, 58–70 (2016). DOI: https://doi.org/10.1080/01496395.2016.1231692

E. Annan, B. Agyei-Tuour, Y. D. Bensah, D. S. Konadu, A. Yaya, B. Onwona-Agyeman, E. Nyankson, Application of clay ceramics and nanotechnology in water treatment: A review, Cogent Engineering 5, 1–35 (2018). DOI: https://doi.org/10.1080/23311916.2018.1476017

U. Guth, S. Brosda, J. Schomburg, Applications of clay minerals in sensor techniques, Applied Clay Science 11, 229–236 (1996). DOI: https://doi.org/10.1016/S0169-1317(96)00022-1

H. L. Tcheumi, I. K. Tonle, A. Walcarius, E. Ngameni, Electrocatalytic and sensors properties of natural smectite type clay towards the detection of paraquat using a film-modified electrode, American Journal of Analytical Chemistry 03, 746–754 (2012). DOI: https://doi.org/10.4236/ajac.2012.311099

V. L. Reena, C. Pavithran, V. Verma, J. D. Sudha, Nanostructured multifunctional electromagnetic materials from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite: Preparation and properties, The Journal of Physical Chemistry B 114, 2578–2585 (2010). DOI: https://doi.org/10.1021/jp907778g

R.M. Barrer, Expanded clay minerals: a major class of molecular sieves, Journal of Inclusion Phenomena 4, 109–119 (1986). DOI: https://doi.org/10.1007/BF00655925

K. Abdmeziem-Hamoudi, B. Siert, Synthesis of molecular sieve zeolites from a smectite-type clay material, Applied Clay Science 4, 1–9 (1989). DOI: https://doi.org/10.1016/0169-1317(89)90010-0

A. Pietrodangelo, R. Salzano, C. Bassani, S. Pareti, C. Perrino, Composition, size distribution, optical properties, and radiative effects of laboratory-resuspended pm10 from geological dust of the rome area, by electron microscopy and radiative transfer modelling, Atmospheric Chemistry and Physics 15, 13177–13194 (2015). DOI: https://doi.org/10.5194/acp-15-13177-2015

L. S. Abdallah, A.M. Zihlif, Effect of grain size on the AC electrical properties of kaolinite/polystyrene composites, Journal of Thermoplastic Composite Materials 23, 779–792 (2010). DOI: https://doi.org/10.1177/0892705709353724

A. Awwad, R. Ahmad, H. Alsyouri, Associated minerals and their influence on the optical properties of jordanian kaolin, Jordan Journal of Earth and Environmental Sciences 2, 66–71 (2009).

C. resources Ltd, Exploring the Tarairá gold belt, 2014. https://www.cosigo.com/i/pdf/CorporatePresentation.pdf.

H. G. Dill, Residual clay deposits on basement rocks: The impact of climate and the geological setting on supergene argillitization in the bohemian massif (central Europe) and across the globe, Earth-Science Reviews 165, 1 –58 (2017). DOI: https://doi.org/10.1016/j.earscirev.2016.12.004

D. Camuo, M. Del Monte, C. Sabbioni, Origin and growth mechanisms of the sulfated crusts on urban limestone, Water, Air, and Soil Pollution 19, 351–359 (1983). DOI: https://doi.org/10.1007/BF00159596

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Acetic acid treatment to remove carbonates, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/acid.htm, 2001. Accessed: 2019-02-16.

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Removal of organic matter with hydrogen peroxide, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/h2o2.htm, 2001. Accessed: 2019-02-16.

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Separation of silt and clay by decantation for x-ray powder diffraction, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/decant.htm, 2001. Accessed: 2019-02-16.

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Smear slide sample mounts for x-ray powder diffraction, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/xsslide.htm, 2001. Accessed: 2019-02-16.

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Heat treatments for x-ray powder diffraction, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/heating.htm, 2001. Accessed: 2019-02-16.

U. Coastal, M. G. program, A laboratory manual for x-ray powder diffraction: Ethylene glycol treatment, https://pubs.usgs.gov/of/2001/of01-041/htmldocs/methods/eglycol.htm, 2001. Accessed: 2019-02-16.

G. Rodríguez, J. G. Bermúdez, C. Ramírez, K. Ramos, F. Ortiz, J. Sepúlveda, M. I. Sierra, hierro oolítico en el área del municipio de Mitú 327 (Departamento de Vaupés, Amazonía Colombiana), Boletín de Ciencias de la Tierra 25 – 33 (2013).

G. García, J. Sepúlveda, C. Ramírez, F. Ortiz, K. Ramos, J. Bermúdez, M. Sierra-Rojas, Cartografía geológica y exploración geoquímica de la plancha 443 MIT, 2011.

J. H. L.J. Poppe, V.F. Paskevich, D. Blackwood, A laboratory manual for x-ray powder diffraction, 2010. https://pubs.usgs.gov/of/2001/of01-041/index.htm. DOI: https://doi.org/10.3133/ofr0141

C. Galindo-Gonzalez, J. M. Feinberg, T. Kasama, L. C. Gontard, M. Posfai, I. Kosa, J. D. Duran, J. E. Gil, R. J. Harrison, R. E. Dunin-Borkowski, Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces, American Mineralogist 94, 1120–1129 (2009). DOI: https://doi.org/10.2138/am.2009.3167

J. H. M. Viana, P. R. C. Couceiro, M. C. Pereira, J. D. Fabris, E. I. F. Filho, C. E. G. R. Schaefer, H. R. Rechenberg, W. A. P. Abraha˜o, E. C. Mantovani, Occurrence of magnetite in the sand fraction of an oxisol in the Brazilian savanna ecosystem, developed from a magnetite-free lithology, Soil Research 44, 71 (2006). DOI: https://doi.org/10.1071/SR05034

U. Schwertmann, Goethite and hematite formation in the presence of clay minerals and gibbsite at 25c, Soil Science Society of America Journal 52, 288 (1988). DOI: https://doi.org/10.2136/sssaj1988.03615995005200010052x

A. Merkys, A. Vaitkus, J. Butkus, M. Okuli-Kazarinas, V. Kairys, S. Graulis, COD::CIF::Parser: an error correcting CIF parser for the Perl language, Journal of Applied Crystallography 49 (2016). DOI: https://doi.org/10.1107/S1600576715022396

S. Graulis, A. Merkys, A. Vaitkus, M. Okuli-Kazarinas, Computing stoichiometric molecular composition from 344 crystal structures, Journal of Applied Crystallography 48, 85–91 (2015). DOI: https://doi.org/10.1107/S1600576714025904

S. Graulis, A. Dakevi, A. Merkys, D. Chateigner, L. Lutterotti, M. Quirs, N. R. Serebryanaya, P. Moeck, R. T. Downs, A. Le Bail, Crystallography open database (cod): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Research 40, D420–D427 (2012). DOI: https://doi.org/10.1093/nar/gkr900

S. Grazˇulis, D. Chateigner, R. T. Downs, A. F. T. Yokochi, M. Quiro´s, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography Open Database – an open-access collection of crystal structures, Journal of Applied Crystallography 42,726–729 (2009). DOI: https://doi.org/10.1107/S0021889809016690

R. T. Downs, M. Hall-Wallace, The american mineralogist crystal structure database, American Mineralogist 88, 247–250 (2003). DOI: https://doi.org/10.2138/am-2003-0409

A. F. Gualtieri, Accuracy of XRPD QPA using the combined rietveld–RIR method, Journal of Applied Crystallography 33, 267–278 (2000). DOI: https://doi.org/10.1107/S002188989901643X

J. S. Lister, S. W. Bailey, Chlorite Polytypism: IV. Regular Two-Layer Structures, American Mineralogist 52, 1614–1631 (1967).

L. W. Finger, R. M. Hazen, Crystal structure and isothermal compression of fe2o3, cr2o3, and v2o3 to 50 kbars, Journal of Applied Physics 51, 5362 (1980). DOI: https://doi.org/10.1063/1.327451

A. Jain, S. P. Ong, G. Hautier,W. Chen,W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1, 011002 (2013). DOI: https://doi.org/10.1063/1.4812323

N. Pailhe, A. Wattiaux, M. Gaudon, A. Demourgues, Impact of structural features on pigment properties of alpha - fe2 o3 haematite, Journal of Solid State Chemistry 181, 2697–2704 (2008). DOI: https://doi.org/10.1016/j.jssc.2008.06.049

A. Fox, Optical Properties of Solids, Oxford master series in condensed matter physics, Oxford University Press, 2001.

J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium, Physica Status Solidi (b) 15, 627–637 (1966). DOI: https://doi.org/10.1002/pssb.19660150224

E. A. Davis, N. F. Mott, Conduction in non-crystalline systems v. conductivity, optical absorption and photoconductivity in amorphous semiconductors, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 22, 0903–0922 (1970). DOI: https://doi.org/10.1080/14786437008221061

N. Mott, E. Davis, Electronic Processes in Non-Crystalline Materials, Electronic Processes in Non-crystalline Materials, OUP Oxford, 2012.

Codata, Fundamental physical constants, 2019. http://physics.nist.gov/.

Descargas

Publicado

2022-01-29

Cómo citar

Galíndez Ruales, Édgar F., Rojas Venegas, J. A., Sánchez, D., Landínez Téllez, D. A., & Roa-Rojas, J. (2022). Propiedades ópticas, eléctricas, estructurales y morfológicas de arcilla mineral KAl4Si2O12/Mg3Si2O9/Fe2O3 de la región montañosa de Machado, Tarairá, Colombia. Ciencia En Desarrollo, 13(1), 43–55. https://doi.org/10.19053/01217488.v13.n1.2022.12884

Número

Sección

Artículos de investigación / Research papers

Métrica