Skip to main navigation menu Skip to main content Skip to site footer

Proposal of an empirical model to estimate the productivity of ‘Valencia’ orange (Citrus sinensis L. Osbeck) in the Colombian low tropics

Supporting Agencies
Universidad Nacional de Colombia, Universidad Pedagógica y Tecnológica de Colombia

Adult cultivation of var. Valencia orange (Citrus sinensis L. Osbeck). Photo: J.A. Cleves-Leguízamo

Abstract

The response of the citrus crop to environmental supply largely determines the speed and intensity of the plant's ecophysiological processes, which affect the development and production of the crop. The main objective was to analyze the effects of climatic conditions on the productivity of the ‘Valencia’ orange agroecosystems (Citrus sinensis L. Osbeck) previously typified in the department of Meta, Colombia. The climatological variables precipitation (PPT), maximum and minimum temperatures (Tmax and Tmin), wind speed, relative humidity and solar brightness were analyzed in an observation window spanning the years 2013 to 2015. Using the FAO CropWat model, the crop reference evapotranspiration (ETo) was obtained to applied agroclimatic indices. Using the statistical software STATGRAPHICS Centurion XVI v. 16.2.04, an empirical model was proposed that relates productivity according to agroclimatic indices, for the vegetative and reproductive phenological phases. It was found that the proposed empirical model explains 49% (P=0.0233) of the oscillation of productivity in study area agroecosystems. The model, based on agroclimatic indices associated with PPT, ETo, Tmax and Tmin, found that the relationship between productivity and agroclimatic indices is non-linear. It was established that productivity variation is mainly influenced by PPT, the occurrence and magnitude of which determines the volume of production and quality of the fruit. On the other hand, whereas increases in air temperature and the occurrence of water deficits in the pre-flowering and flowering phases positively favor crop production, the same factors produce a negative effect in the setting phase.

Keywords

Low tropics, Citriculture, Productivity, Empirical models, Climatic data

PDF

References

Abdelghany, S. 2015. Vegetative anatomy and phisiology. In: Science Gate, https://sciencetalkgate.wordpress.com/2015/11/28/vegetative-anatomy-and-physiology/; consulted: June, 2021.

Aguilar, P., M. Escobar, and C. Passaro. 2010. Situación actual de la cadena de cítricos en Colombia: limitantes y perspectivas. Ministerio De Agricultura y Desarrollo Rural (MADR); Asohofrucol. Bogotá.

Agustí, M. 2003. Citricultura. 2nd ed. Editorial Mundiprensa, Madrid.

Allen, R., S. Luis, D. Raes, and M. Smith. 2006. Evapotranspiración del Cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Documento FAO No. 56. Series Riego y Drenaje. Rome.

Auler, P.A.M., A.C.G. Fiori-Tutida, and Z.H. Tazima. 2008. Comportamento da laranjeira ‘Valencia’ sobre seis porta-enxertos no noroeste do Paraná. Rev. Bras. Frutic. 30(1), 229-234. Doi: https://doi.org/10.1590/S0100-29452008000100042

Cleves-Leguizamo, J.A. 2018a. Avances conceptuales y metodológicos de la Estructura Agroecológica Principal (EAP). Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.

Cleves-Leguízamo, J.A. 2018b. Resiliencia de los agroecosistemas citrícolas a la variabilidad climática en el departamento del Meta-Colombia. PhD thesis. Faculty of Agriculture Sciences, Universidad Nacional de Colombia, Bogotá.

Cleves-Leguízamo, J.A., J. Fonseca, and J. Orduz. 2012. Aportes de la investigación en cítricos al manejo agroecológico del cultivo en el piedemonte del departamento del Meta. Rev. Investigación Agraria y Ambiental 2(3), 85-98. Doi: https://doi.org/10.22490/21456453.945

Cleves-Leguízamo, J.A. and A. Jarma. 2014. Characterization and typification of citrus systems in the department of Meta. Agron. Colomb. 32(1), 113-121. Doi: https://doi.org/10.15446/agron.colomb.v32n1.42164

Cleves- Leguízamo, JA., T. León, and J. Toro. 2020. Metodologías para la evaluación de la agrobiodiversidad en sistemas agrícolas: Atributos ecosistémicos y culturales. Editorial UPTC, Tunja, Colombia.

Cleves-Leguízamo, J.A, J. Toro, and L. Martínez. 2016. Los balances hídricos agrícolas en modelos de simulación agroclimáticos. Una revisión analítica. Rev. Colomb. Cienc. Hortic. 10(1), 149-163. Doi: https://doi.org/10.17584/rcch.2016v10i1.4460

Cleves-Leguízamo, J.A., J. Toro, L. Martínez, and T. León. 2017. La Estructura Agroecológica Principal (EAP): novedosa herramienta para la planeación del uso de la tierra en Agroecosistemas. Rev. Colomb. Cienc. Hortic. 11(2), 441-449. Doi: https://doi.org/10.17584/rcch.2017v11i2.7350

Cleves-Leguízamo, J.A., H. Salamanca, and L. Martínez. 2019. Socioecological resilience of citrus fruits agroecosystems typical. Rev. Colomb. Cienc. Hortic. 13(2), 186-199. Doi: https://doi.org/10.17584/rcch.2019v13i2.10601

Davenport, T. 1990. Citrus flowering. Hortic. Rev. 12, 349-408. Doi: https://doi.org/10.1002/9781118060858.ch8

Díaz, E. 2012. Modelación agrometeorológica de emisiones de Óxido Nitroso en Brachiaria humidicola bajo condiciones del Valle del Sinú. Msc thesis. Universidad Nacional de Colombia, Bogotá.

DNP, Departamento Nacional de Planeación of Colombia and IDB, Inter-American Development Bank. 2014. Impactos económicos del cambio climático en Colombia - Síntesis. Bogota.

Fischer, G., F. Ramirez, and F. Casierra. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agron. Colomb. 34(2), 190-199. Doi: https://doi.org/10.15446/agron.colomb.v34n2.56799

Garzón, D., J. Vélez, and J. Orduz. 2013. Efecto del déficit hídrico en el crecimiento y desarrollo de frutos de naranja Valencia (Citrus sinensis L. Osbeck) en el piedemonte del Meta, Colombia. Acta Agron. 62(2), 136-147.

Granda, M., García, V., Sistachs, M., Núñez, M., Sánchez, C., Noriega, H., Oliva, A. and N. Reyes. 2009. Mesoclima, rendimiento y calidad del toronjo (Citrus paradisi Macf.) en Cuba. Adaptación al cambio climático. In: Memorias V Taller Regional de Bioclimatología y Maejo de Produción de Cítricos. Valencia, Venezuela.

León, T., J. Toro, L. Martínez, and J.A. Cleves-Leguízamo. 2018. The Main Agroecological Structure (MAS) of the agroecosystems: Concept, methodology and applications. Sustainability 10(9), 3131-3152. Doi: https://doi.org/10.3390/su10093131

Montgomery, D. and E. Peck. 2002. Introduction to linear regression analysis. 3th ed. John Wiley & Sons, New York, NY.

Mooney, H., M. Arroyo, W. Bond, J. Canadell, R. Hubbs, S. Lavorel, and R. Nielson. 2001. Mediterranean-climate ecosystems. pp. 157-199. In: Chapin III, F.S., O.E. Sala, and E. Huber-Sannwald (eds.). Global biodiversity in a changing environment. Scenarios for the 21st century. Springer, New York, NY. Doi: https://doi.org/10.1007/978-1-4613-0157-8_9

Nissi, F.G., M.L. Lakshmi, D.V. Swami, T. Rajashekaram, D.R. Salomi, and U.K. Krishna. 2021. Effect of antitranspirants on growth and fruit parameters of sweet orange (Citrus sinensis (L.) Osbeck). Pharma Innov. J. 10(5), 577-581.

Orduz, J. 2007. Estudios ecofisiológicos y caracterización morfológica y molecular de la mandarina ‘Arrayana’ (Citrus reticulata Blanco) en el piedemonte llanero de Colombia. PhD thesis. Faculty of Agronomy, Universidad Nacional de Colombia, Bogotá.

Orduz, J. and F. Avella. 2008. Comportamiento de 26 cultivares de naranja en condiciones del piedemonte del Meta, Colombia. Rev. Colomb. Cienc. Hortic. 2(2), 157-172. Doi: https://doi.org/10.17584/rcch.2008v2i2.1184
Orduz, J. and G. Fischer. 2007. Balance hídrico e influencia del estrés hídrico en la inducción y desarrollo floral de la mandarina ‘Arrayana’ en el piedemonte llanero de Colombia. Agron. Colomb. 25(2), 255-263.

Orduz, J. and D. Garzón. 2012. Alternancia de la producción y comportamiento fenológico de la naranja ‘Valencia’ (Citrus sinensis (L.) Osbeck) en el trópico bajo húmedo de Colombia. Corpoica, Cienc. Tecnol. Agropecu. 13(2), 136-144. Doi: https://doi.org/10.21930/rcta.vol13_num2_art:248

Orduz, J., H. Monroy, and G. Fischer. 2010. Comportamiento fenológico de la mandarina ‘Arrayana’ en el piedemonte del Meta. Agron. Colomb. 28(1), 63-70.

Owens, T. and E. Moore. 1974. A comparison of various methods of calculating heat unit requirements of tomato. Tech. Bull. No. 70, Mississippi Agric. and Forestry Experiment Station, Mississippi State University, Bost North, MS.

Penning de Vries, F., D. Jansen, H. Berger, and A. Bakema. 1989. Simulation of ecophysiological processes of growth in several annual crops. Simulation Monographs No. 29. Wageningen.

Reuther, W. 1973. Climate and citrus behavior. pp. 280-337. In: Reuther, W. (ed.). The citrus industry. Vol. 3, Division Agricultural Science, University of California, Berkeley, CA.

Reuther, W. and D. Ríos. 1969. Comparison of growth, maturation and composition of citrus fruit in subtropical California and tropical Colombia. Proc. First Intl. Citrus Symp. (3), 277-300.

Rivas, G., L. López, and A. Velasco. 1993. Regresión no lineal. Rev. Colomb. Estad. 27(14), 89-102.

Cunha, A.S., H.C.A. Santos, J.S. Nascimento, A.A. Souza, and F.L. Gurgel. 2019. Avaliação morfoagronômica de um pomar de laranjeira ‘pêra’ sob diferentes porta-enxertos no municipio de Capitão Poço-Pa. In: Proc. IV Congresso Internacional das Ciencias Agrárias. Cointer-PDVAgro. Recife, Brazil. Doi: https://doi.org/10.31692/2526-7701.IVCOINTERPDVAgro.2019.0144

Southwick, S., K. Weis, and J. Yeager. 1995. Controlling cropping in “Loadel” cling peach using gibberellin: Effects on flower density, fruit distribution, fruit firmness, fruit thinning and yield. J. Am. Soc. Hort. Sci. 120(6), 1087-1095. Doi: https://doi.org/10.21273/JASHS.120.6.1087

Stover, E., B. Boman, and L. Parsons. 2002. Physiological response to irrigation and water stress. pp. 112-116. In: Boman, B.J. (ed.). Citrus and water stress. Institute of Agricultural Sciences, University of Florida, Gainesville, FL.

Downloads

Download data is not yet available.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.