Impact of soil temperature on fruit species within climate change scenarios
Abstract
Climate change, with its consequent increase in temperatures and precipitation, has significant impacts on soil surface horizons, affecting the establishment, development, and production of crops and food security and safety. Solar radiation influences the thermals of Earth's surface. Apart from radiation, the effects of soil temperature (STe) are specific to fruit species and are mainly modified by humidity, soil cover and air temperature. Increasing the STe within an optimal range promotes the growth of roots and plants and increases the absorption of water and nutrients, photosynthesis, transpiration, efficient use of water and microbial processes. These effects have been demonstrated in several studies on fruit trees and on grape vines, citrus, cape gooseberries, Annonaceae, avocados, olives and prickly pears. However, apart from these positive results, an increased STe as the result of global warming can generate water stress and in turn affect the yield and quality of fruit trees. In terms of effects from cultural practices, mulching with black or blue plastic can increase the soil temperature, and white or silver plastic decreases it. When compared to air temperature, increases in STe in the plants physiology and climate impact studies have been little studied. Therefore, this review aimed to make significant contributions to facilitate decision-making with the goal of reducing the effects of global warming, especially on fruit trees.
Keywords
Solar radiation, Mulching, Roots, Water absorption, Photosynthesis, Water use efficiency
References
Agustí, M. 2003. Citricultura. Ed. Mundi-Prensa, Madrid.
Agustí, M. 2010. Fruticultura. 2nd ed. Ed. Mundi-Prensa, Madrid.
Ahmad. P. and M.N.V. Prasad (eds.). 2012. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY. Doi: 10.1007/978-1-4614-0815-4
Amare, G. and B. Desta. 2021. Coloured plastic mulches: impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 8(4). Doi: 10.1186/s40538-020-00201-8
Andrade-Hoyos, P., E. Molina Gayosso, C. De León, M.C. Espíndola Barquera, D. Alvarado Rosales, and A. López Jiménez. 2015. Mecanismos de defensa en portainjertos de aguacate ante Phytophthora cinnamomi Rands. Rev. Mex. Cienc. Agríc. 6(2), 347-360. Doi: 10.29312/remexca.v6i2.693
Bakshi, P., D.J. Bhat, V.K. Wali, A. Sharma, and M. Iqbal. 2014. Growth, yield and quality of strawberry (Fragaria x ananassa Duch.) cv. Chandler as influenced by various mulching materials. Afr. J. Agric. Res. 9(7), 701-706. Doi: 10.5897/AJAR2013.7983
Bhatt, R., R. Kaur, and A. Ghosh. 2019. Strategies to practice climate-smart agriculture to improve the livelihoods under the rice-wheat cropping system in South Asia. pp. 32-71. In: Meena, R.S., S. Kumar, J.S. Bohra, and M.L. Jat (eds.). Sustainable management of soil and environment. Springer Nature, Singapore. Doi: 10.1007/978-981-13-8832-3_2
Bonadeo, E., I. Moreno, M. Bongiovanni, R. Marzari, and M.J. Ganum Gorriz. 2017. El sistema suelo-planta. Principios generales. Editora UniRío, Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina.
Bradford, J.B., D.R. Schlaepfer, W.K. Lauenroth, K.A. Palmquist, J.C. Chambers, J.D. Maestas, and S.B. Campbell. 2019. Climate-driven shifts in soil temperature and moisture regimes suggest opportunities to enhance assessments of dryland resilience and resistance. Front. Ecol. Evol. 7, 358. Doi: 10.3389/fevo.2019.00358
Callejas, R., P. Canales, and V. García de Cortázar. 2009. Relationship between root growth of ‘Thompson seedless’ grapevines and soil temperature. Chil. J. Agric. Res. 69(4), 496-502. Doi: 10.4067/S0718-58392009000400003
Callejas, H. and J. Castellanos. 1991. Regímenes de temperatura del suelo (actuales y propuestos). Suelos Ecuatoriales 2(1), 39-50.
Castro, E., Y. Agualimpia, and F. Sánchez. 2016. Modelo climático de los páramos de la cordillera Oriental colombiana aplicado a regímenes de temperatura del suelo. Perspectiva Geográfica 21(1), 33-62. Doi: 10.19053/01233769.4541
Centeno, A., H. Memmi, M.M. Moreno, C. Moreno, and D. Pérez-López. 2018. Water relations in olive trees under cold conditions. Sci. Hortic. 235, 1-8. Doi: 10.1016/j.scienta.2018.02.070
Ceulemans, R., I.A. Janssens, and M.E. Jach. 1999. Effects of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Ann. Bot. 84(5), 577-590. Doi: 10.1006/anbo.1999.0945
Cleves, J.A., J.A. Fonseca, and A.J. Jarma. 2012. Melón (Cucumis melo L.). pp. 701-727. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
Daryanto, S., B. Fu, L. Wang, P.-A. Jacinthe, and W. Zhao. 2018. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 185, 357-373. Doi: 10.1016/j.earscirev.2018.06.013
Deng, L., K. Wang, J. Li, G. Zhao, and Z. Shangguan. 2016. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the loess plateau, China. Ecol. Eng. 94, 525-531. Doi: 10.1016/j.ecoleng.2016.06.048
Drennan, P.M. and P.S. Nobel. 1998. Root growth dependence on soil temperature for Opuntia ficus-indica: influences of air temperature and a doubled CO2 concentration. Funct. Ecol. 12, 959-964. Doi: 10.1046/j.1365-2435.1998.00276.x
Fischer, G. (ed.). 2012. Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
Fischer, G., H.E. Balaguera-López, and S. Magnitskiy. 2021. Review on the ecophysiology of important Andean fruits: Solanaceae. Revista UDCA Act. Div. Cient. 24(1), e1701. Doi: 10.31910/rudca.v24.n1.2021.1701
Fischer, G., G. Ebert, and P. Lüdders. 2000. Root-zone temperature effects on dry matter distribution and leaf gas exchange of cape gooseberry (Physalis peruviana L.). Acta Hortic. 531, 169-173. Doi: 10.17660/ActaHortic.2000.531.24
Fischer, G., G. Ebert, and P. Lüdders. 2007. Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81(1), 29-35.
Fischer, G. and P. Lüdders. 1992. Effect of root-zone temperature on growth and development of cape gooseberry (Physalis peruviana L.). Acta Hortic. 310, 189-198. Doi: 10.17660/ActaHortic.1992.310.23
Fischer, G. and P. Lüdders. 1999. Efecto de la temperatura del substrato sobre el consumo de agua y la transpiración en la uchuva (Physalis peruviana L.). Suelos Ecuatoriales 29(1), 45-49.
Fischer, G. and L.M. Melgarejo. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Rev. Colomb. Cienc. Hortic. 14(1), 76-89. Doi: 10.17584/rcch.2020v14i1.10893
Fischer, G. and J.O. Orduz-Rodríguez. 2012. Ecofisiología en los frutales. pp. 54-72. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota.
Fischer, G. and F. Torres. 1998. Efecto de la temperatura del suelo sobre la planta. Parte 2: Fisiología y metabolismo. Rev. Comalfi 25(1-3), 40-50.
Fischer, G. and J. Torres. 1999. Efecto de la temperatura del suelo sobre la planta. Parte 3: Modificaciones de las propiedades térmicas del suelo. Rev. Comalfi 26 (1-3), 95-105.
Fischer, G., F. Torres, and J. Torres. 1997. Efecto de la temperatura del suelo sobre la planta. Parte 1: Crecimiento y desarrollo. Rev. Comalfi 24(3), 78-92.
Friedrich, G. and M. Fischer. 2000. Physiologische Grundlagen des Obstbaues. Verlag Eugen Ulmer, Stuttgart, Germany.
Gambetta, G., C. Mesejo, A. Gravina, M. Agustí, C. Fasiolo, F. Rey, C. Reig, A. Martínez-Fuentes, and O. Bentancur. 2015. Cobertura del suelo con cal: efecto en la reducción de la temperatura y cambio de color de mandarinas precoces. Agrociencia Uruguay 19(1), 31-40.
Helaly, A.A., Y. Goda, A.A. El-Rehim, A.A. Mohamed, and O.A.H. El-Zeiny. 2017. Effect of polyethylene mulching type on the growth, yield and fruits quality of Physalis pubescens. Adv. Plants Agric. Res. 6(5), 154-160. Doi: 10.15406/apar.2017.06.00229
Houser, C. 2010. Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr. 35, 65-86. Doi: 10.1177/0309133310386514
Ibacache, A., N. Rojas, and C. Jopia. 1999. Growing period of roots in cherimoya trees (Annona cherimola Mill.) in the north of Chile. Acta Hortic. 497, 331-346. Doi: 10.17660/ActaHortic.1999.497.18
IPCC, Intergovernmental Panel on Climate Change. 2019. Summary for Policymakers. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Geneva, Switzerland.
IPCC, Intergovernmental Panel on Climate Change. 2013. Summary for policymakers. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (eds.). Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY.
Jiménez-Pérez, A., M.C. Cach-Pérez, M. Valdez-Hernández, and E. Rosa-Manzano. 2019. Effect of canopy management in the water status of cacao (Theobroma cacao) and the microclimate within the crop area. Bot. Sci. 97(4), 701-710. Doi: 10.17129/botsci.2256
Jungqvist, G., S.K. Oni, C. Teutschbein, and M.N. Futter. 2014. Effect of climate change on soil temperature in Swedish boreal forests. PLoS ONE 9(4), e93957. Doi: 10.1371/journal.pone.0093957
Kath, J. and K.G. Pembleton. 2019. A soil temperature decision support tool for agronomic research and management under climate variability: Adapting to earlier and more variable planting conditions. Comp. Electron. Agric. 162, 783-792. Doi: 10.1016/j.compag.2019.05.030
Kochhar, S.L. and S.K. Gujral (eds.). 2020. Plant physiology: Theory and applications. 2nd ed. Cambridge University Press, Cambridge, UK. Doi: 10.1017/9781108486392
Kurylyk, L., T. Kerry, K. MacQuarrie, and J. McKenzie. 2014. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 138, 313-334. Doi: 10.1016/j.earscirev.2014.06.006
Lado, J., G. Gambetta, and L. Zacarias. 2018. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 233, 238-248. Doi: 10.1016/j.scienta.2018.01.055
Lal, R. 2013. Soil carbon management and climate change. Carbon Manage. 4(4), 439-362. Doi: 10.4155/cmt.13.31
Lambers, H., F.S. Chapin III, and T.L. Pons. 2008. Plant physiological ecology. 2nd ed. Springer Science and Business Media, New York, NY. Doi: 10.1007/978-0-387-78341-3
Lambers, H. and F.S. Oliveira (eds.). 2019. Plant physiological ecology. 3rd ed. Springer Nature, Cham, Switzerland. Doi: 10.1007/978-3-030-29639-1
Lippmann, R., S. Babben, A. Menger, C. Delker, and M. Quint. 2019. Development of wild and cultivated plants under global warming conditions. Curr. Biol. 29, 1326-1338. Doi: 10.1016/j.cub.2019.10.016
López-Bellido, L. 2015. Agricultura, cambio climático y secuestro de carbono. Departamento de Ciencia y Recursos Agrícolas y Forestales, Universidad de Córdoba, Cordoba, Spain.
López-Valencia, D., M. Sánchez-Gómez, J.F. Acuña-Caita, and G. Fischer. 2018. Propiedades fisicoquímicas de siete variedades destacadas de fresa (Fragaria×ananassa Duch.) cultivadas en Cundinamarca (Colombia) durante su maduración. Cienc. Tecnol. Agropecu. 19(1), 1-18. Doi: 10.21930/rcta.vol19_num1_art:528
McMichael, B.L. and J.J. Burke. 2002. Temperature effects on root growth. pp. 717-728. In: Waisel, Y., A. Eshel, and L. Kafkafi (eds.). Plant roots – The hidden half. 3rd ed. Marcel Dekker, New York, NY.
Mahmud, K.P., B.P. Holzapfel, Y. Guisard, J.P. Smith, S. Nielsen, and S.Y. Rogiers. 2018. Circadian regulation of grapevine root and shoot growth and their modulation by photoperiod and temperature. J. Plant Physiol. 222, 86-93. Doi: 10.1016/j.jplph.2018.01.006
Marschner, H. 2002. Mineral nutrition of higher plants. 2nd ed. Academic Press, London.
Marschner, P. (ed.). 2012. Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier, Amsterdam.
Mesejo, C., G. Gambetta, A. Gravina, A. Martínez-Fuentes, C. Reig, and M. Agustí. 2012. Relationship between soil temperature and fruit colour development of ‘Clemenpons’ Clementine mandarin (Citrus clementina Hort ex. Tan). J. Sci. Food Agric. 92, 520-525. Doi: 10.1002/jsfa.4600
Mishra, A.K., S.B. Agrawal, and M. Agrawal. 2019. Rising atmospheric carbon dioxide and plant responses: current and future consequences. pp. 265-306. In: Climate change and agricultural ecosystems. Elsevier, Amsterdam, The Netherlands. Doi: 10.1016/B978-0-12-816483-9.00011-6
Mu, Z.J., A.Y. Huang, J.P. Ni, J.Q. Li, Y.Y. Liu, S. Shi, D.T. Xie, and R. Hatano. 2013. Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China. J. Soil Sci. Plant Nutr. 13(3), 566-578. Doi: 10.4067/S0718-95162013005000045
Nobel, P. (ed.). 2020. Physicochemical and environmental plant physiology. 5th ed. Cambridge, MA. Doi: 10.1016/C2018-0-04662-9
Ojeda, M., B. Schaffer, and F. Davies. 2004. Flooding, root temperature, physiology and growth of two Annona species. Tree Physiol. 24, 1019-1025. Doi: 10.1093/treephys/24.9.1019
Patil, D.D. and M.V. Kulkarni. 2016. Soil temperature and its influence of crop growth. Readers Shelf 12(9), 41-42.
Pérez-López, D., A. Moriana, M.C. Gijón, and J. Mariño. 2010. Water relation response to soil chilling of six olive (Olea europaea L.) cultivars with different frost resistance Spain. J. Agric. Res. 3, 780-789. Doi: 10.5424/sjar/2010083-1279
Pumpanen, J., J. Heinonsalo, T. Rasilo, and H. Ilvesniemi. 2012. Effect of increased soil temperature on CO2 exchange and net biomass accumulation in Picea abies, Pinus sylvestris and Betula pendula. Tree Physiol. 32, 724-736. Doi: 10.1093/treephys/tps007
Ramírez-Gil, J.G. and J.G. Morales-Osorio. 2018. Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Sci. Hortic. 240, 273-280. Doi: 10.1016/j.scienta.2018.06.047
Rao, K.V.R., A. Bajpai, S. Gangwar, L. Chourasia, and K. Soni. 2017. Effect of mulching on growth, yield and economics of watermelon (Citrullus lanatus Thunb). Environ. Ecol. 35(3D), 2437-2441.
Sauer, T.J. and X. Peng. 2018. Soil temperature and heat flux. In: Hatfield, J.L., M.V.K. Sivakumar, and J.H. Prueger (eds.). Agroclimatology: Linking agriculture to climate. Agron. Monogr. 60. American Society of Agronomy, Madison, WI. Doi: 10.2134/agronmonogr60.2016.0024
Sawan, Z.M. 2018. Climatic variables: Evaporation, sunshine, relative humidity, soil and air temperature and its adverse effects on cotton production. Inf. Proces. Agric. 5, 134-148. Doi: 10.1016/j.inpa.2017.09.006
Silva, D.M.N., L.C. Heitor, A.O. Candido, B.S.A. Moraes, G.S. Souza, J.B.S. Araújo, and E.S. Mendonça. 2020. Carbon balance in organic conilon coffee intercropped with tree species and banana. Rev. Árvore 44, e4421. Doi: 10.1590/1806-908820200000021
Sperling, O., L.C.R. Silva, A. Tixier, G. Théroux-Rancourt, and M.A. Zwieniecki. 2017. Temperature gradients assist carbohydrate allocation within trees. Sci. Rep. 7, 3265, Doi: 10.1038/s41598-017-03608-w
Sthapit, B.R., V.R. Rao, and S.R. Sthapit (eds.). 2012. Tropical fruit tree species and climate change. Bioversity International, New Delhi.
Surówka, E., M. Rapacz, and F. Janowiak. 2020. Climate change influences the interactive effects of simultaneous impact of abiotic and biotic stresses on plants. In: Hasanuzzaman, M. (ed.). Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives Vol. I. Springer Nature, Singapore. Doi: 10.1007/978-981-15-2156-0_1
Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.
Torres, N., N. Goicoechea, and M.C. Antolín. 2018. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures. Agric. Water Manage. 202, 285-298. Doi: 10.1016/j.agwat.2017.12.004
UNEP, United Nations Environment Programme. 2009. Annual report. In: https://www.unep.org/resources/annual-report/unep-2009-annual-report; consulted: Abril, 2021.
Vera-Estrella, R., B. Barkla, J. Bohnert, and O. Pantoja. 2004. Novel regulation of aquaporins during osmotic stress. Plant Physiol. 135, 2318-2329. Doi: 10.1104/pp.104.044891
Yohannes, H. 2016. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7(2), 335. Doi: 10.4172/2157-7617.1000335
Yusof, I.M., D.W. Buchanan, and J.F. Gerber. 1969. The response of avocado and mango to soil temperature. J. Amer. Soc. Hort Sci. 94(6), 619-621.
Villarreal-Navarrete, A., G. Fischer, L.M. Melgarejo, G. Correa, and L. Hoyos-Carvajal. 2017. Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Hortic. 1178, 161-168. Doi: 10.17660/ActaHortic.2017.1178.28
Whiley, A.W., B.N. Wolstenholme, J.B. Saranah, and P.A. Anderson. 1990. Effect of root temperature on growth of two avocado rootstocks cultivars. Acta Hortic. 275, 153-160. Doi: 10.17660/ActaHortic.1990.275.15
Zhang, H., L. Binhui, D. Zhou, Z. Wu, and T. Wang. 2019. Asymmetric soil warming under global climate change. Int. J. Environ. Res. Public Health, 16, 1504. Doi: 10.3390/ijerph16091504
Zheng, X., D. Streimikiene, T. Balezentis, A. Mardani, F. Cavallaro, and L. Huchang. 2019. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J. Clean. Prod. 234, 1113-1133. Doi: 10.1016/j.jclepro.2019.06.140
Zhu, H., S. Hu, J. Yang, F. Karamage, H. Li, and S. Fu. 2019. Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut desert in Xinjiang, China. J. Arid Land 11, 685-700. Doi: 10.1007/s40333-019-0104-8