Respuesta de Allium cepa L. en presencia de Gaeolaelaps aculeifer y Parasitus bituberosus para el control de Thrips tabaci Lindeman

Contenido principal del artículo

Autores

Mayerly Alejandra Castro-López https://orcid.org/0000-0003-1151-2514
John Wilson Martínez-Osorio http://orcid.org/0000-0002-5742-8062

Resumen

La principal limitante del cultivo de Allium cepa L. es Thrips tabaci dado que genera daños directos e indirectos en el cultivo. El principal método de control es mediante productos de síntesis química, no obstante, este insecto ya presenta resistencia a ingredientes activos como organofosforados, carbamatos y piretroides. Por tal razón, este estudio consistió en evaluar la densidad poblacional de T. tabaci y la respuesta de variables fisiológicas relacionadas con la fotosíntesis y desarrollo de plantas de cebolla de bulbo a la presencia de ácaros depredadores del suelo como Gaeolaelaps aculeifer y Parasitus bituberosus, los cuales pueden alterar el ciclo de vida de los trips, especialmente la fase de pupa presente en el suelo. Se evaluaron siete tratamientos que consistieron en la liberación en plantas de cebolla de 50, 75 y 100 adultos de G. aculeifer, 50, 75 y 100 adultos de P. bituberosus y un testigo sin ácaros depredadores. Se observaron diferencias significativas (P≤0,05) en la densidad poblacional de T. tabaci al final del experimento, con una reducción de individuos de 78% en presencia de G. aculeifer y 72% con P. bituberosus. Así mismo, hubo reducción en el índice relativo de clorofila, área foliar, peso foliar seco y peso fresco del bulbo en comparación con el testigo. La aplicación de 100 individuos de las dos especies de ácaros, registró los valores más altos en las variables evaluadas. Estos resultados indican que G. aculeifer y P. bituberosus puede ser una opción de control a explorar más a fondo dentro de un esquema de manejo integrado de T. tabaci.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

El copyright de los artículos e ilustraciones son propiedad de la Revista Colombiana de Ciencias Hortícolas. Los editores autorizan el uso de los contenidos bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0). La citación correcta de los contenido deben registrar de forma explícita el nombre de la revista, nombre(s) del (de los) autor(es), año, título del artículo, volumen, número, página del artículo y DOI. Se requiere un permiso escrito a los editores para publicar más que un resumen corto del texto o las figuras.

Referencias

Al-Amidi, A.H.K. and M.J. Downes, 1990. Parasitus bituberosus (Acari: Parasitidae), a possible agent for biological control of Heteropeza pygmaea (Diptera: Cecidomyiidae) in mushroom compost. Exp. Appl. Acarol. 8, 13-25. Doi: https://doi.org/10.1007/BF01193378

Al-Amidi, A.H.K., R. Dunne, and M.J. Downes. 1991. Parasitus bituberosus (Acari: Parasitidae): An agent for control of Lycoriella solani (Diptera: Sciaridae) in mushroom crops. Exp. Appl. Acarol. 11, 159-166. Doi: https://doi.org/10.1007/BF01246088

Berndt, O., H.-M. Poehling, and R. Meyhöfer. 2004. Predation capacity of two predatory laelapid mites on soil-dwelling thrips stages. Entomol. Exp. Appl. 112(2), 107-115. Doi: https://doi.org/10.1111/j.0013-8703.2004.00185.x

Cárdenas, E. and D. Corredor. 1989. Biología del trips Frankliniella occidentalis (Pegande) (Thysanoptera: Thripidae) sobre crisantemo Chrysanthemum morifolium L. bajo condiciones de laboratorio. Agron. Colomb. 6(1-2), 71-77.

Carrillo, D., G.J. Moraes, and J.E. Peña (eds.). 2015. Prospects for biological control of plant feeding mites and other harmful organisms. Progress in Biological Control. Vol. 19. Springer International Publishing, Cham, Switzerland. Doi: https://doi.org/10.1007/978-3-319-15042-0

Castilho, R.C., R. Venancio, and J.P.Z. Narita. 2015. Mesostigmata as biological control agents, with emphasis on Rhodacaroidea and Parasitoidea. pp 1-32. In: Carrillo, D., G.J. Moraes, and J.E. Peña (eds.). Prospects for biological control of plant feeding mites and other harmful organisms. Progress in Biological Control. Vol. 19. Springer International Publishing, Cham. Doi: https://doi.org/10.1007/978-3-319-15042-0_1

Castro-López, M. 2018. Ácaros Mesostigmata como potenciales controladores de Thrips tabaci Lindeman en el cultivo de cebolla Allium cepa L. MSc thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota, DC.

Damte, T., G. Tabor, M. Haile, G. Mitiku, and T. Lulseged. 2017. Determination of beginning of bulb enlargement time in shallot, Allium cepa var aggregatum for managing onion thrips (Thrips tabaci). Sci. Hortic. 220, 154-159. Doi: https://doi.org/10.1016/j.scienta.2017.03.035

Diaz-Montano, J., M. Fuchs, Nault, B.A. Nault, J. Fail, and A.M. Shelton. 2011. Onion thrips (Thysanoptera: Thripidae): A global pest of increasing concern in onion. J. Econ. Entomol. 104(1), 1-13. Doi: https://doi.org/10.1603/EC10269

Dogliotti, S. P. Colnago, G. Galván, and L. Aldabe. 2011. Bases fisiológicas del crecimiento y desarrollo de los principales cultivos hortícolas: Tomate (Lycopersicum sculentum), papa (Solanun tuberosum) y cebolla (Allium cepa). pp. 39-57. Curso de Fisiología de los Cultivos–Módulo Horticultura, Facultad de Agronomía, Universidad de la República de Uruguay, Montevideo.

Estrada-Ortiz, E., L.I. Trejo, F.C. Gómez-Merino, M. Sandoval-Villa, and R. Núñez-Escobar. 2011. Respuestas bioquímicas en fresa al suministro de fósforo en forma de fosfito. Rev. Chapingo Ser. Hortic. 17(3), 129-138. Doi: https://doi.org/10.5154/r.rchsh.2011.17.024

Freire, A.R.P. and G.J. Moraes. 2007. Mass production of the predatory mite Stratiolaelaps scimitus (Womersley) (Acari: Laelapidae). Syst. Appl. Acarol. 12(2), 117-119. Doi: http://dx.doi.org/10.11158/saa.12.2.4

Gill, H.,K. H. Garg, A.K. Gill, J.L. Gillett-Kaufman, and B.A. Nault. 2015. Onion thrips (Thysanoptera: Thripidae) biology, ecology, and management in onion production systems. J. Integr. Pest Manag. 6(1), 2155-7470. Doi: https://doi.org/10.1093/jipm/pmv006

Heckmann, L.-H., A. Ruf, K.M. Nienstedt, and P.H. Krogh. 2007. Reproductive performance of the generalist predator Hypoaspis aculeifer (Acari: Gamasida) when foraging on different invertebrate prey. Appl. Soil Ecol. 36(2-3), 130-135. Doi: https://doi.org/10.1016/j.apsoil.2007.01.002

Hernández, G., V. Toscano, N. Méndez, L. Gómez, and M. Mullings. 1996. Efecto de la concentración de fósforo sobre su asimilación en tres genotipos de fríjol común (Phaseolus vulgaris L.). Agron. Mesoam. 7(1), 80-85. Doi: https://doi.org/10.15517/am.v7i1.24794

Hsu, C.L. C.A. Hoepting, M. Fuchs, A.M. Shelton, and B.A. Nault. 2010. Temporal dynamics of iris yellow spot virus and its vector, Thrips tabaci (Thysanoptera: Thripidae), in seeded and transplanted onion fields. Environ. Entomol. 39(2), 266-277. Doi: https://doi.org/10.1603/EN09165

Jandricic, S.E., D. Schmidt, G. Bryant, and S.D. Frank. 2016. Non-consumptive predator effects on a primary greenhouse pest: Predatory mite harassment reduces western flower thrips abundance and plant damage. Biol. Control 95, 5-12. Doi: https://doi.org/10.1016/j.biocontrol.2015.12.012

Jensen, L.B., B.C. Simko, C.C. Shock, and L.D. Saunders. 2003. A two-year study on alternative methods for controlling onion thrips (Thrips tabaci L.) in Spanish onions. OSU Agricultural Experiment Station - Special Report 1048, 94-106.

Kendall, D.M. and L.B. Bjostad. 1990. Phytohormone ecology: herbivory by Thrips tabaci induces greater ethylene production in intact onions than mechanical damage alone. J. Chem. Ecol. 16, 981-991. Doi: https://doi.org/10.1007/BF01016506

Lebedev, G. F. Abo-Moch, G. Gafni, D. Ben-Yakir, and M. Ghanim. 2013. High-level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of Thrips tabaci collected in Israel. Pest Manag. Sci. 69(2), 274-277. Doi: https://doi.org/10.1002/ps.3385.

Levy, D. and N. Kedar. 1970. Effect of ethrel on growth and bulb initiation in onion. HortScience 5, 80-82.

Marschner, P. (ed.). 2012. Mineral nutrition of higher plants. 3rd ed. Elsevier, Oxford, UK.
Martin, N.A., P.J. Workman, and R.C. Butler. 2003. Insecticide resistance in onion thrips (Thrips tabaci) (Thysanoptera: Thripidae). N.Z.J. Crop Hortic. Sci. 31(2), 99-106. https://doi.org/10.1080/01140671.2003.9514242.

Messelink, G. and R. van Holstein-Saj. 2008. Improving thrips control by the soil-dwelling predatory mite Macrocheles robustulus (Berlese). Integrated Control in Protected Crops, Temperate Climate IOBC/wprs Bulletin 32, 135-138.

Molenaar, N.D. 1984. Genetics, thrips (Thrips tabaci L.) resistance and epicuticular wax characteristics of nonglossy and glossy onions (Allium cepa L.). PhD thesis. University of Wisconsin, Madison, WI.

Moreira, G.F. and G.J. Moraes. 2015. The potential of free-living Laelapid mites (Mesostigmata: Laelapidae) as biological control agents. pp. 77-102. In: Carrillo, D., Moraes, G.J. de & Peña, J.E. (Eds.), Prospects for biological control of plant feeding mites and other harmful organisms. Progress in Biological Control. Vol. 19. Springer International Publishing, Cham. Doi: https://doi.org/10.1007/978-3-319-15042-0_3

Muñoz, R.M., M.L. Lerma, P. Lunello, and H.F. Schwartz. 2014. Iris yellow spot virus in Spain: incidence, epidemiology, and yield effect on onion crops. J. Plant Pathol. 96(1), 97-103. Doi: http://dx.doi.org/10.4454/JPP.V96I1.029

Navarro-Campos, C., A. Pekas, M.L. Moraza, A. Aguilar, and F. Gracia-Marí. 2012. Soil-dwelling predatory mites in citrus: their potential as natural enemies of thrips with special reference to Pezothrips kellyanus (Thysanoptera: Thripidae). Biol. Control 63(2), 201-209. Doi: https://doi.org/10.1016/j.biocontrol.2012.07.007

Oliveira, A.R., G.J. Moraes, C.G.B. Demétrio, and E.A.B. Nardo. 2000. Efeito do virus de poliedrose nuclear de Anticarsia gemmatalis sobre Oribatida edaficos (Arachnida; Acari) em um campo de soja. Boletim de Pesquisa 13. Embrapa Meio Ambiente, Jaguariuna, Brazil. pp. 5-31.

Parrella, M.P. and T. Lewis. 1997. Integrated pest management (IPM) in field crops. pp. 595-614. In: Lewis, T. (ed.). Thrips as crop pests. CAB International, Wallingford, UK.

Pineda-Mares, P., M.J. Martínez, O.A. Amante, and V.V. Ruiz. 2001. Respuesta del maíz al fósforo y un mejorador de suelos en áreas yesosas de la zona media de San Luis de Potosí. Rev. Chapingo Ser. Zonas Áridas 2, 106-113.

Pinzón, H. 2009. Los cultivos de cebolla y ajo en Colombia: estado del arte y perspectivas. Rev. Colomb. Cienc. Hortic. 3(1), 45-55. https://doi.org/10.17584/rcch.2009v3i1.1198.

Rueda, A., F.R. Badenes-Pérez, and A.M. Shelton. 2007. Developing economic thresholds for onion thrips in Honduras. Crop Prot. 26(8), 1099-1107. Doi: https://doi.org/10.1016/j.cropro.2006.10.002

Rueda-Ramírez, D., D.M. Ríos-Malaver, A. Varela-Ramírez, and G.J. Moraes. 2018. Colombian population of the mite Gaeolaelaps aculeifer as a predator of the thrips Frankliniella occidentalis and the possible use of an astigmatid mite as its factitious prey. Syst. Appl. Acarol. 23(12), 2359-2372. Doi: http://dx.doi.org/10.11158/saa.23.12.8.

Rueda-Ramírez, D., D. Ríos-Malaver, A. Varela-Ramírez, and G.J. Moraes. 2019. Biology and predation capacity of Parasitus bituberosus (Acari: Mesostigmata: Parasitidae) on Frankliniella occidentalis (Thysanoptera: Thripidae), and free-living nematodes as its complementary prey. Pest Manag. Sci. 75(7), 1819-1830. Doi: https://doi.org/10.1002/ps.5326.

Saito, T. and M. Brownbridge. 2016. Compatibility of soil-dwelling predators and microbial agents and their efficacy in controlling soil-dwelling stages of western flower thrips Frankliniella occidentalis. Biol. Control. 92, 92-100. Doi: https://doi.org/10.1016/j.biocontrol.2015.10.003

Sardar, M.A. and P.W. Murphy. 1987. Feeding tests of grassland soil-inhabiting gamasine predators. Acarologia 28(2), 117-121.

Shaikh, R.R., M.F. Acharya, and N.S. Rode. 2015. Bionomics of Thrips tabaci Lindeman on onion. J. Exp. Zool. India 18(1), 457-459.

Shekari, F., A. Abbasi, and S. Mustafavi. 2017. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. J. Saudi Soc. Agric. Sci. 16(4), 367-374. Doi: https://doi.org/10.1016/j.jssas.2015.11.006

Shelton, A.M., J.Z. Zhao, B.A. Nault, J. Plate, F.R. Musser, and E. Larentzaki. 2006. Patterns of insecticide resistance in onion thrips (Thysanoptera: Thripidae) in onion fields in New York. J. Econ. Entomol. 99(5), 1798-1804. Doi: https://doi.org/10.1093/jee/99.5.1798

Szafranek, P., M. Lewandowski, and M. Kozak. 2013. Prey preference and life tables of the predatory mite Parasitus bituberosus (Acari: Parasitidae) when offered various prey combinations. Exp. Appl. Acarol. 61, 53-67. Doi: https://doi.org/10.1007/s10493-013-9701-y

van Lenteren, J.C. 2012. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl 57, 1-20. Doi: https://doi.org/10.1007/s10526-011-9395-1

Vergel, M., J.J. Martínez, and S.L. Zafra. 2017. Cultivo de cebolla y su comportamiento en la Provincia de Ocaña. Rev. Colomb. Cienc. Hortic. 10(2), 333-344. Doi: https://doi.org/10.17584/rcch.2016v10i2.5070

Wu, S. Y. Gao, X. Xu, E. Wang, Y. Wang, and Z. Lei. 2014. Evaluation of Stratiolaelaos scimitus and Neoseiulus barkeri for biological control of thrips on greenhouse cucumbers. Biocontrol Sci. Tech. 24(10), 1110-1121. Doi: https://doi.org/10.1080/09583157.2014.924478

Descargas

La descarga de datos todavía no está disponible.