Estimación de parámetros fisiológicos en altas densidades de plantación y arreglo poblacional de Musa AAA Simmonds

Contenido principal del artículo

Autores

José Luis Barrera-Violeth https://orcid.org/0000-0001-9104-0099
José Régulo Cartagena-Valenzuela https://orcid.org/0000-0001-6196-2439
Omar Alonso Nanclares-Gómez https://orcid.org/0000-0002-9843-934X

Resumen

En el Urabá antioqueño se presenta una escasez de fruto en el primer semestre y una sobreoferta en el segundo semestre, motivada por la baja o alta precipitación respectivamente, situación que afecta el valor de la producción. Se estableció durante los años 2015-2016 en un lugar representativo de la región, un experimento con el objetivo de determinar la distribución en campo y la densidad de plantación que contribuyan a maximizar el potencial agronómico de Musa AAA Simmonds cv. Williams. Los tratamientos arreglo poblacional (rectángulo, triángulo y doble surco) y las densidades de plantación (2000, 2500, 3,000 y 3,500 plantas/ha; y un testigo (1,700 plantas/ha en triángulo), se evaluaron en un diseño de bloques completos al azar con tres repeticiones. En las fases fenológicas de diferenciación floral, floración y cosecha, el intercambio de gases se cuantificó con mediciones de tasa de fotosíntesis, concentración interna de CO2 conductancia estomática, transpiración, déficit de presión de vapor y eficiencia en el uso del agua. También se tuvieron en cuenta la temperatura de la hoja, la eficiencia cuántica de fotosíntesis y el uso eficiente de la radiación. Los componentes de rendimiento y la calidad del fruto se estimaron con la masa del fruto, numero de manos, numero de dedos, longitud de la última mano y grado de la segunda y última mano. Los resultados demostraron que la densidad de 2,500 plantas/ha distribuidas en triángulo o doble surco, promovió el mejor uso de los elementos del clima asociados con la fijación de CO2 en las condiciones ambientales de Urabá, Antioquia.

Palabras clave:

Detalles del artículo

Licencia

Creative Commons License
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.

El copyright de los artículos e ilustraciones son propiedad de la Revista Colombiana de Ciencias Hortícolas. Los editores autorizan el uso de los contenidos bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0). La citación correcta de los contenido deben registrar de forma explícita el nombre de la revista, nombre(s) del (de los) autor(es), año, título del artículo, volumen, número, página del artículo y DOI. Se requiere un permiso escrito a los editores para publicar más que un resumen corto del texto o las figuras.

Referencias

Ainsworth, E.A. and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258-270. Doi: https://doi.org/10.1111/j.1365-3040.2007.01641.x

Arantes, A., S. Rodrigues, E. De Siqueira, Coelho, and T. Silva. 2016. Gas exchange in different varieties of banana prata in semi-arid environment. Rev. Bras. Frutic. 38(2), 1-12. Doi: https://doi.org/10.1590/0100-29452016600

Athani, S., I. Revanappa, and P.R. Dharmatti. 2009. Effect of plant density on growth and yield in banana. Karnataka J. Agric. Sci. 22(1), 143-146.

AUGURA, Asociación de Bananeros de Colombia. 2017. Coyuntura bananera colombiana. Unidad de Estadística y Análisis Económico. Medellin, Colombia.

AUGURA, Asociación de Bananeros de Colombia. 2018. Coyuntura bananera colombiana. Unidad de Estadística y Análisis Económico. Departamento de Sistemas. Medellin, Colombia.

Barrera, J., J. Cartagena, and O. Nanclares. 2020. Influence of high planting densities and arrangements on yield and fruit development of Musa AAA Simmonds. Acta Agron. 69(1), 46-53. Doi: https://doi.org/10.15446/acag.v69n1.79834

Benson, A. 2013. Influence of number of sucker per plant on the growth, yield and yield components of plantain (Musa sp) in Ado-Ekiti, Nigeria. Agric. Sci. Res. J. 3(2), 45-49.

Cayón, G. 2001. Evolución de la fotosíntesis, transpiración y clorofila durante
el desarrollo de la hoja de plátano (Musa AAB Simmonds). Infomusa 10(1), 12-15.

Cayón, G. 2004. Ecofisiología y productividad del plátano (Musa AAB Simmonds). pp. 172-183. In: Proc. XVI Reunión de la Asociación para la Cooperación en Investigaciones de Banano en el Caribe y en América Tropical. ACORBAT, Oaxaca, México.

Cayón, G., J.A. Valencia, H. Morales, and A. Domínguez. 2004. Desarrollo y producción del plátano Dominico-Hartón (Musa AAB Simmonds) en diferentes densidades y arreglos de siembra. Agron. Colomb. 22(1), 18-22.

Coelho, E., E. da Costa, C. da Silva e S. de Oliveira. 2006. Produtividade e eficiência do uso de água das bananeiras ‘Prata Anã’ e ‘Grand Naine’ sob irrigação no terceiro ciclo no Norte de Minas Gerais. Irriga 11(4), 460-468. Doi: https://doi.org/10.15809/irriga.2006v11n4p460-468

Eckstein, K. and J.C. Robinson. 1995. Physiological responses of banana (Musa AAA; Cavendish subgroup) in the subtropics. (I) Influence of internal plant factors on gas exchange of banana leaves. J. Hortic. Sci. 70, 147-156. Doi: https://doi.org/10.1080/14620316.1995.11515284

Enginneer, C., M. Hashimoto-Sugimoto, J. Negi, M. Israelsson-Nordstrom, T. Azoulay-Shemer, W.J. Rappel, K. Iba, and J. Schroeder. 2016. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci. 21(1), 16-30. Doi: https://doi.org/10.1016/j.tplants.2015.08.014

FAO. 2020. Banana market review: Preliminary results 2019. Roma.

Galán, V. and J. Robinson. 2013. Fisiología, clima y producción de banano. pp. 43-57. In: Proc. XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos). Fortaleza, Brazil.

Gariglio, N., R. Pilatti, and M. Fonfría. 2007. Requerimientos ecofisiológicos de los árboles frutales. pp. 41-82 In: Sozzi, G.O. (ed.). Árboles frutales. Ecofisiología, cultivo y aprovechamiento. Buenos Aires, Argentina: Editorial Facultad de Agronomía, Universidad de Buenos Aires.

Hatfield, J.L. and C. Dold. 2019. Water-use efficiency: advances and challenges in a changing climate. Front. Plant Sci. 10, 103. Doi: https://doi.org/10.3389/fpls.2019.00103

Hermida-Carrera, C., M.V. Kapralov, and J. Galmés. 2016. Rubisco catalytic properties and temperature response in crops. Plant Physiol. 171(4), 2549-256. Doi: https://doi.org/10.1104/pp.16.01846

Huntingford, C., D. Mark, W. Davies, R. Falk, R. Sitch, and L. Mercado. 2015. Combining the [ABA] and net photosynthesis-based model equations of stomatal conductance. Ecol. Model. 300, 81-88. Doi: https://doi.org/10.1016/j.ecolmodel.2015.01.005

IGAC, Instituto Geográfico Agustín Codazzi. 2007. Estudio semidetallado de los suelos de las áreas potencialmente agrícolas: Urabá, departamento de Antioquia. Bogota.

Jaramillo, C., M. Oliva, and R. Ferreira. 2009. Respuesta fotosintética de diferentes ecotipos de fríjol a la radiación y la salinidad. Corpoica Cienc. Tecnol. Agropecu. 10(2), 129-140. Doi: https://doi.org/10.21930/rcta.vol10_num2_art:135

Landsberg, J. and R. Waring. 2017. Water relations in tree physiology: where to from here? Tree Physiol. 37(1), 18-32. Doi: https://doi.org/10.1093/treephys/tpw102

Lanuakum, G., I. Yepthomi, and C. Maiti. 2015. Effect of radiation interception and canopy temperature on growth, yield and quality in banana cv. Grande naine (AAA) under different planting densities. J. Hortic. Sci. 10(2), 172-176.

Lawson, T. and M.R. Blatt. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 1664, 1556-1570. Doi: https://doi.org/10.1104/pp.114.237107

Liu, X., H. Zhang, J. Wang, X. Wu, S. Ma, Z. Xu, T. Zhou, N. Xu, X. Tang, and B. An. 2019. Increased CO2 concentrations increasing water use efficiency and improvement PSII function of mulberry seedling leaves under drought stress. J. Plant Interact. 14(1), 213-223. Doi: https://doi.org/10.1080/17429145.2019.1603405

Magnabosco, F. and F. Cardin. 2018. A qualitative dynamic picture of the chemical kinetics for photosynthesis. Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat. 96, S3, A5.

Parry, M., P.J. Andralojc, J.C. Scales, M.E. Salvucci, A.E. Carmo-Silva, H. Alonso, and S.M. Whitney. 2013. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64(3), 717-730. Doi: https://doi.org/10.1093/jxb/ers336

Patil, P., P. Biradar, A. Bhagawathi, and I. Hejjegar. 2018. A review on leaf area index of horticulture crops and its importance. Int. J. Curr. Microbiol. App. Sci. 7(4), 505-513. Doi: https://doi.org/10.20546/ijcmas.2018.704.059

Qaderi, M.M., A.B. Martel, and S.L. Dixon. 2019. Environmental factors influence plant vascular system and water regulation. Plants 8(65), 1-23. Doi: https://doi.org/10.3390/plants8030065

Ramirez, J., A. Jarvis, I. Van den Bergh, C. Staver, and D. Turner. 2011. Changing climates, effects on growing and plantain (Musa spp.) and possible responses. pp. 426-438. In: Yadav, S., R. Redden, J. Hartfield, H. Lotze-Campen, and A. Hall (eds). Crop adaptation to climate change. John Wiley and Sons, Chichester, UK. Doi: https://doi.org/10.1002/9780470960929.ch29

Ravi, I., S. Uma, M. Vaganan, and M. Mustaffa. 2013. Phenotyping bananas for drought resistance. Front. Physiol. 4, 1-9. Doi: https://doi.org/10.3389/fphys.2013.00009

Robinson, J. and V. Galán. 2010. Bananas and plantains. CABI, London, UK. Doi: https://doi.org/10.1079/9781845936587.0000

Rocha, M., S. Rodrigues, A. Arantes, E. Coelho, and P. de Oliveira. 2017. Gas exchange in ‘BRS Princesa’ banana (Musa spp.) under partial rootzone drying irrigation in the north of Minas Gerais, Brazil. Acta Agron. 66(3), 378-384. Doi: https://doi.org/10.15446/acag.v66n3.55056

Rocha, P., S. Rodrigues, A. Rebouças, and R. Carriello. 2018. Gas exchange and yield of Prata-type banana plants with fertilizer sources for organic management. Afr. J. Agric. Res. 13(5), 272-280. Doi: https://doi.org/10.5897/AJAR2017.12896

Rodríguez, W., J. Araya, and L. Pérez. 2007. Efecto del arreglo espacial y la densidad de siembra sobre la estructura y eficiencia del dosel, el crecimiento y la producción del banano (Musa AAA cv. Willians). CORBANA 33(60), 1-14.

Runkle, E. 2015. Interactions of light, CO2 and temperature on photosynthesis. In: Michigan State University. Extension Floriculture Team, https://www.canr.msu.edu/uploads/resources/pdfs/light-co2-and-temp.pdf; consulted: December, 2019.

Santos, A., E. Amorim, C. Ferreira, and C.P. Pirovani. 2018. Water stress in Musa spp.: A systematic review. PLoS ONE 13(12), 1-17. Doi: https://doi.org/10.1371/journal.pone.0208052

Santos, R., L.W. Pacheco, S. Costa, N. Machado, P.C. de Mello Farias, C. Rombaldi, and A. Costa de Oliveira. 2015. Genetic regulation and the impact of omics in fruit ripening. Plant Omics 8(2), 78-88.

Santosh, D., K. Tiwari, and R. Gopala. 2017. Banana bunch covers for quality banana production - A Review. Int. J. Curr. Microbiol. Appl. Sci. 6(7), 1275-129. Doi: https://doi.org/10.20546/ijcmas.2017.607.155

Senevirathna, A., C. Stirling, and V. Rodrigo. 2008. Acclimation of photosynthesis and growth of banana (Musa sp.) to natural shade in the humid tropics. Exp. Agric. 44(3), 301-312. Doi: https://doi.org/10.1017/S0014479708006364

Siles, P., O. Bustamante, E. Valdivia, J. Burkhardt, and C. Staver. 2013. Photosynthetic performance of banana (‘Gros Michel’, AAA) under a natural shade gradient. Acta Hortic. 986, 71-77. Doi: https://doi.org/10.17660/ActaHortic.2013.986.5

Smith, E., M. Velásquez, L. Zuluaga, and J. Valerin. 2010. Efecto de la densidad de población sobre el crecimiento y producción de plantas en primera generación de banano dátil (Musa AA). Agron. Costarr. 34(1), 77-83. Doi: https://doi.org/10.15517/rac.v34i1.6701

Solarte, M., L. Pérez, and L. Melgarejo. 2010. Ecofisiología vegetal. pp. 137-166. In: Melgarejo, L. (ed.). Experimentos en fisiología vegetal. Universidad Nacional de Colombia, Bogota.

Surendar, K., D. Devi, P. Jeyakumar, K. Velayudham, and I. Ravi. 2015. Changes in proline and polyphenol oxidase enzyme activity in some banana cultivars and hybrids under water stress. Genom. Appl. Biol. 6(4), 1-6. Doi: https://doi.org/10.5376/gab.2015.06.0004

Thippesha, D., V. Srinivas, B. Sriharsha, G. Janardhan, and B. Mahanthesh. 2008. Effect of planting systems, spacing and nutrition on dry matter production on distribution in banana cv. Robusta. Asian J. Hortic. 3(2), 297-300.

Toro, A., R. Ortega, M. Vázquez, and L. Ibáñez. 2016. Requerimientos de riego y predicción del rendimiento en el cultivo de banano mediante un modelo de simulación en el Urabá antioqueño, Colombia. Rev. Tecnol. Cienc. Agua 7(6), 105-122.

Torres, J. 2016. Absorción, distribución y acumulación de nitrógeno en banano variedad Williams en dos ciclos de producción en zona húmeda tropical. PhD thesis. Universidad Nacional de Colombia, Bogota.

Turner, D., J. Fortescue, and D. Tomas. 2007. Environmental physiology of the bananas (Musa spp). Braz. J. Plant Physiol. 19(4), 463-484. Doi: https://doi.org/10.1590/S1677-04202007000400013

Turner, D., J. Fortescue, and D. Thomas. 2009. Bananas: Environment and crop physiology. pp. 1-30. In: DaMatta, F. (ed). Ecophysiology of tropical tree crops. Nova Science Publishers, New York, NY.

Urban, J., M. Ingwers, M. McGuire, and R. Teskey. 2017. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12(8), e1356534. Doi: https://doi.org/10.1080/15592324.2017.1356534

Vargas, A. and J. Sandoval. 2005. Evaluación agronómica, de producción y de calidad de Yangambi (AAA) y Dátil (AA). InfoMusa 14(1), 6-10.

Vargas-Calvo, A., P. Chinchilla-Acuña, and H. Valle-Ruiz. 2015. La emisión foliar en plátano y su relación con la diferenciación floral. Agron. Mesoam. 26(1), 119-128. Doi: https://doi.org/10.15517/am.v26i1.16935

Descargas

La descarga de datos todavía no está disponible.