Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition




Laminaceae, Aromatic plants, Plant nutrition, Perennial herb


The production of export-quality spearmint is limited in Colombia because of low production volumes, poor compliance with good agricultural practices, nutrient availability, and fertilization management. This study aimed to identify how NPK fertilization influences photosynthesis and photochemistry in Mentha plants during vegetative growth in a mesh house. Increasing doses of chemical fertilization were evaluated with a 10-30-10 (N-P-K) formula at 0, 60, 90, 120, and 180 kg ha-1. The evaluated variables were net photosynthesis (A), transpiration (E), stomatal conductance (gs), leaf temperature (Tleaf), quantum yield (Qy), Non-photochemical quenching (NPQ), photochemical quenching (qP), and dry matter (Dm). The highest A, Qy, E, and gs values were in the plants treated with high NPK doses; the NPQ and qP increased in the plants with low NPK doses. These findings elucidated the influence of NPK on photosynthesis and other physiological parameters in the growth and development of spearmint.


Download data is not yet available.


Agronet. 2021. Estadísticas Agropecuarias - Agrícola. In:; Consulted: September, 2021.

Battie-Laclau, P., J.-P. Laclau, C. Beri, L. Mietton, M.R.A. Muniz, B.C. Arenque, M.C. Piccolo, L. Jordan-Meille, J.-P. Bouillet, and Y. Nouvellon. 2014. Photosynthetic and anatomical responses of Eucalyptus grandis leaves to potassium and sodium supply in a field experiment. Plant Cell Environ. 37, 70-81. Doi: 10.1111/pce.12131

Brown, B., J.M. Hart, M.P. Wescott, and N.W. Christensen. 2003. The critical role of nutrient management in mint production. Better Crops 87(4), 9-11.

Carstensen, A., A.E. Szameitat, J. Frydenvang, and S. Husted. 2019. Chlorophyll a fluorescence analysis can detect phosphorus deficiency under field conditions and is an effective tool to prevent grain yield reductions in spring barley (Hordeum vulgare L.). Plant Soil 434(1), 79-91. Doi: 10.1007/s11104-018-3783-6

Cendrero-Mateo, M.P., A.E. Carmo-Silva, A. Porcar-Castell, E.P. Hamerlynck, S.A. Papuga, and M.S. Moran. 2015. Dynamic response of plant chlorophyll fluorescence to light, water and nutrient availability. Funct. Plant Biol. 42(8), 746-757. Doi: 10.1071/FP15002

Cirlini, M., P. Mena, M. Tassotti, K.A. Herrlinger, K.M. Nieman, C. Dall’Asta, and D. Del Rio. 2016. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 21(8), 1007. Doi: 10.3390/molecules21081007

Chen, C.-T., C.-L. Lee, and D.-M. Yeh. 2018. Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma. HortScience 53(6), 795-798. Doi: 10.21273/HORTSCI12947-18

Chrysargyris, A., E. Nikolaidou, A. Stamatakis, and N. Tzortzakis. 2017. Vegetative, physiological, nutritional and antioxidant behavior of spearmint (Mentha spicata L.) in response to different nitrogen supply in hydroponics. J. Appl. Res. Med. Aromat. Plants 6, 52-61. Doi: 10.1016/j.jarmap.2017.01.006

Chrysargyris, A., S.A. Petropoulos, Â Fernandes, L. Barros, N. Tzortzakis, and I.C.F.R. Ferreira. 2019b. Effect of phosphorus application rate on Mentha spicata L. grown in deep flow technique (DFT). Food Chem. 276, 84-92. Doi: 10.1016/j.foodchem.2018.10.020

Chrysargyris, A., M. Solomou, S.A. Petropoulos, and N. Tzortzakis. 2019a. Physiological and biochemical attributes of Mentha spicata when subjected to saline conditions and cation foliar application. J. Plant Physiol. 232, 27-38. Doi: 10.1016/j.jplph.2018.10.024

DaMatta, F.M., R.A. Loos, E.A. Silva, and M.E. Loureiro. 2002. Limitations to photosynthesis in Coffea canephora as a result of nitrogen and water availability. J. Plant Physiol. 159, 975-981. Doi: 10.1078/0176-1617-00807

De Angeli, A., D. Monachello, G. Ephritikhine, J.M. Frachisse, S. Thomine, F. Gambale, and H. Barbier-Brygoo. 2006. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939-942. Doi: 10.1038/nature05013

Demmig-Adams, B., S.-C. Koh, C.M. Cohu, O. Muller, J.J. Stewart, and W.W. Adams III. 2014. Non-photochemical fluorescence quenching in contrasting plant species and environments. pp. 531-552. In: Demmig-Adams, B., G. Garab, W. Adams III, and Govindjee (eds.). Non-Photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in Photosynthesis and Respiration. Vol. 40. Springer, Dordrecht, The Netherlands. Doi: 10.1007/978-94-017-9032-1_24

Du, Q., X.-H. Zhao, L. Xia, C.J. Jiang, X.G. Wang, Y. Han, J. Wang, and H.-Q. Yu. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). J. Integr. Agric. 18(2), 395-406. Doi: 10.1016/S2095-3119(18)61953-7

Engels, C., E. Kirkby, and P. White. 2012. Mineral nutrition, yield and source: sink relationships. pp. 85-133. In: Marschner, P. (ed.). Marschner’s mineral nutrition of higher plants. Elsevier, London. Doi: 10.1016/B978-0-12-384905-2.00005-4

Frydenvang, J., M. van Maarschalkerweerd, A. Carstensen, S. Mundus, S.B. Schmidt, P.R. Pedas, K.H. Laursen, J.K. Schjoerring, and S. Husted. 2015. Sensitive detection of phosphorus deficiency in plants using chlorophyll a fluorescence. Plant Physiol. 169(1), 353-361. Doi: 10.1104/pp.15.00823

Gerardeaux, E., L. Jordan-Meille, and S. Pellerin. 2009. Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin. J. Agric. Sci. 147(2), 155-168. Doi: 10.1017/S0021859608008381

Guidi, L., E. Lo Piccolo, and M. Landi. 2019. Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front. Plant Sci. 10, 174. Doi: 10.3389/fpls.2019.00174

Hawkesford, M., W. Horst, T. Kichey, H. Lambers, J. Schjoerring, I.S. Møller, and P. White. 2012. Functions of macronutrients. pp. 135-189. In: Marschner, P. (ed.). Marschner’s mineral nutrition of higher plants. 3rd ed. Elsevier, London. Doi: 10.1016/B978-0-12-384905-2.00006-6

Hernández, I. and S. Munné-Bosch. 2015. Linking phosphorus availability with photo-oxidative stress in plants. J. Exp. Bot. 66, 2889-2900. Doi: 10.1093/jxb/erv056

Hou, W., J. Yan, B. Jákli, J. Lu, T. Ren, R. Cong, and X. Li. 2018. Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.). J. Agric. Food Chem. 66(20), 5125-5132. Doi: 10.1021/acs.jafc.8b01135

Hu, W., T. Ren, F. Meng, R. Cong, X. Li, P.J. White, and J. Lu. 2019. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO2 diffusion and carboxylation. Physiol. Plant. 167(3), 418-432. Doi: 10.1111/ppl.12919

Huang, Z.A., D.A. Jiang, Y. Yang, J.W. Sun, and S.H. Jin. 2004. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42(3), 357-364. Doi: 10.1023/B:PHOT.0000046153.08935.4c

Hubbart, S., I.R.A. Smillie, M. Heatle, R. Swarup, C.C. Foo, L. Zhao, and E.H. Murchie. 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiency in rice. Commun. Biol. 1, 22. Doi: 10.1038/s42003-018-0026-6

Jin, S.H., J.Q. Huang, X.Q. Li, B.S. Zheng, J.S. Wu, Z.J. Wang, G.H. Liu, and M. Chen. 2011. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in Carya cathayensis. Tree Physiol. 31, 1142-1151. Doi: 10.1093/treephys/tpr095

Kalaji, H.M., A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, I.A. Samborska, M.D. Cetner, I. Łukasik, V. Goltsev, and R.J. Ladle. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant 38(4), 102. Doi: 10.1007/s11738-016-2113-y

Karkanis, A., C. Lykas, V. Liava, A. Bezou, S. Petropoulos, and N. Tsiropoulos. 2017. Weed interference with peppermint (Mentha x piperita L.) and spearmint (Mentha spicata L.) crops under different herbicide treatments: effects on biomass and essential oil yield. J. Sci. Food Agric 98(1), 43-50. Doi: 10.1002/jsfa.8435

Kromdijk, J., K. Głowacka, L. Leonelli, S.T. Gabilly, M. Iwai, K.K. Niyogi, and S.P. Long. 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314), 857-861. Doi: 10.1126/science.aai8878

Lima, J.D., P.R. Mosquim, and F.M. Da Matta. 1999. Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica 36(1), 113-121. Doi: 10.1023/A:1007079215683

Lu, Z., J. Lu, Y. Pan, P. Lu, X. Li, R. Cong, and T. Ren. 2016. Anatomical variation of mesophyll conductance under potassium deficiency has a vital role in determining leaf photosynthesis. Plant Cell Environ. 39(11), 2428-2439. Doi: 10.1111/pce.12795

Lu, C. and J. Zhang. 2000. Photosynthetic CO2 assimilation, chlorophyll fluorescence and photoinhibition as affected by nitrogen deficiency in maize plants. Plant Sci. 151(2), 135-143. Doi: 10.1016/S0168-9452(99)00207-1

Malhotra, H., Vandana, S. Sharma, and R. Pandey. 2018. Phosphorus nutrition: plant growth in response to deficiency and excess. pp. 171-190. In: Hasanuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_7

Martineau, E., J.-C. Domec, A. Bosc, M. Dannoura, Y. Gibon, C. Bénard, and L. Jordan-Meille. 2017. The role of potassium on maize leaf carbon exportation under drought condition. Acta Physiol. Plant. 39, 219. Doi: 10.1007/s11738-017-2515-5

Mu, X. and Y. Chen. 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158, 76-82. Doi: 10.1016/j.plaphy.2020.11.019

Mu, X., Q. Chen, X. Wu, F. Chen, L. Yuan, and G. Mi. 2018. Gibberellins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ. Exp. Bot. 150, 198-208. Doi: 10.1016/j.envexpbot.2018.03.012

Muñoz-Huerta, R.F., R.G. Guevara-Gonzalez, L.M. Contreras-Medina, I. Torres-Pacheco, J. Prado-Olivarez, and R.V. Ocampo-Velazquez. 2013. A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13(8), 10823-10843. Doi: 10.3390/s130810823

Murchie, E.H. and A.V. Ruban. 2020. Dynamic non‐photochemical quenching in plants: from molecular mechanism to productivity. Plant J. 101(4), 885-896. Doi: 10.1111/tpj.14601

Oosterhuis, D.M., D.A. Loka and T.B. Raper. 2013. Potassium and stress alleviation: Physiological functions and management of cotton. J. Plant Nutr. Soil Sci. 176(3), 331-343. Doi: 10.1002/jpln.201200414

Pan, Y., Z. Lu, J. Lu, X. Li, R. Cong, and T. Ren. 2017. Effects of low sink demand on leaf photosynthesis under potassium deficiency. Plant Physiol Biochem. 113, 110-121. Doi: 10.1016/j.plaphy.2017.01.027

Pandey, R., G. Zinta, H. AbdElgawad, A. Ahmad, V. Jain, and I.A. Janssens. 2015. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol. Adv. 33(3-4), 303-316. Doi: 10.1016/j.biotechadv.2015.03.011

Pantin, F., T. Simonneau, G. Rolland, M. Dauzat, and B. Muller. 2011. Control of leaf expansion: A developmental switch from metabolics to hydraulics. Plant Physiol. 156(2), 803-815. Doi: 10.1104/pp.111.176289

Parkash, V. and S. Singh. 2020. A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10), 3945. Doi: 10.3390/su12103945

Pedraza, R. and M.C. Henao. 2008. Composición del tejido vegetal y su relación con variables de crecimiento y niveles de nutrientes en el suelo en cultivos comerciales de menta (Mentha spicata L.). Agron. Colomb. 26(2), 186-196.

Qiu, J. and D.W. Israel. 1994. Carbohydrate accumulation and utilization in soybean plants in response to altered phosphorus nutrition. Physiol. Plant. 90(4), 722-728. Doi: 10.1111/j.1399-3054.1994.tb02529.x

R Core Team. 2017. R: a language and environment for statistical computing. Vienna.

Rodríguez Torressi, A.O., M. Yonni, M. Nazareno, C.R. Galmarini, and C.A. Bouzo. 2015. Eficiencia fotoquímica máxima e índice de potencial fotosintético en plantas de melón (Cucumis melo) tratadas con bajas temperaturas. FAVE, Secc. Cienc. Agrar. 13, 1-2. Doi: 10.14409/fa.v13i1/2.4966

Roveda-Hoyos, G. and L. Moreno-Fonseca. 2019. Physiological and antioxidant responses of cape gooseberry (Physalis peruviana L.) seedlings to phosphorus deficiency. Agron. Colomb. 37(1), 3-11. Doi: 10.15446/agron.colomb.v37n1.65610

Ruban, A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 170(4), 1903-1916. Doi: 10.1104/pp.15.01935

Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Rev. Colomb. Cienc. Hortic. 13(3), 325-335. Doi: 10.17584/rcch. 2019v13i3.100171

Schlüter, U., C. Colmsee, U. Scholz, A. Brӓutigam, A.P.M. Weber, N. Zellerhoff, M. Bucher, H. Fahnenstich, and U. Sonnewald. 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14(1), 442. Doi: 10.1186/1471-2164-14-442

Singh, P., A. Misra, and N.K. Srivastava. 2001. Influence of Mn deficiency on growth, chlorophyll content, physiology, and essential monoterpene oil (s) in genotypes of spearmint (Mentha spicata L.). Photosynthetica 39(3), 473-476. Doi: 10.1023/A:1015107116205

Smethurst, C.F., T. Garnett, and S. Shabala. 2005. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1), 31-45. Doi: 10.1007/s11104-004-1082-x

Tewari, R.K., P. Kumar, and P.N. Sharma. 2007. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J. Integr. Plant Biol. 49(3), 313-322. Doi: 10.1111/j.1744-7909.2007.00358.x

Tighe-Neira, R., M. Alberdi, P. Arce-Johnson, J. Romero, M. Reyes-Díaz, Z. Rengel, and C. Inostroza-Blancheteau. 2018. Role of potassium in governing photosynthetic processes and plant yield. pp. 191-203. In: Hasanuzzaman, M., M. Fujita, H. Oku, K. Nahar, and B. Hawrylak-Nowak (eds.). Plant nutrients and abiotic stress tolerance. Springer, Singapore. Doi: 10.1007/978-981-10-9044-8_8

Timlin, D.J., T.C.M. Naidu, D.H. Fleisher, and V.R. Reddy. 2017. Quantitative effects of phosphorus on maize canopy photosynthesis and biomass. Crop Sci. 57(6), 3156-3169. Doi: 10.2135/cropsci2016.11.0970

Tremblay, N., Z. Wang, and Z.G. Cerovic. 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 32, 451-464. Doi: 10.1007/s13593-011-0041-1

Walker, A.P., A.P. Beckerman, L. Gu, J. Kattge, L.A. Cernusak, T.F. Domingues, J.C. Scales, G. Wohlfahrt, S.D. Wullschleger, and F.I. Woodward. 2014. The relationship of leaf photosynthetic traits–Vcmax and Jmax–to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta‐analysis and modeling study. Ecol. Evol. 4(16), 3218-3235. Doi: 10.1002/ece3.1173

Wang, X., L. Wang, and Z. Shangguan. 2016. Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS One 11(11), e0165733. Doi: 10.1371/journal.pone.0165733

Wang, X.-G., X.-H. Zhao, C.-J. Jiang, C.-H. Li, S. Cong, D. Wu, Y.-Q. Chen, H.-Q. Yu, and C.-Y. Wang. 2015. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 14(5), 856-863. Doi: 10.1016/S2095-3119(14)60848-0

Wikifarmer. 2021. Información sobre la planta de menta. In:; consulted: September, 2021.

Xie, K., Z. Lu, Y. Pan, L. Gao, P. Hu, M. Wang, and S. Guo. 2020. Leaf photosynthesis is mediated by the coordination of nitrogen and potassium: the importance of anatomical-determined mesophyll conductance to CO2 and carboxylation capacity. Plant Sci. 290, 110267. Doi: 10.1016/j.plantsci.2019.110267

Xu, H.X., X.Y. Weng, and Y. Yan. 2007. Effect of phosphorus deficiency on the photosynthetic characteristics of rice plants. Russ. J. Plant Physiol. 54, 741-748. Doi: 10.1134/S1021443707060040

Ye, Z., J. Zeng, X. Li, F. Zeng, and G. Zhang. 2017. Physiological characterizations of three barley genotypes in response to low potassium stress. Acta Physiol. Plant. 39, 232. Doi: 10.1007/s11738-017-2516-4

Zhao, X., Q. Du, Y. Zhao, H. Wang, Y. Li, X. Wang, and H. Yu. 2016. Effects of different potassium stress on leaf photosynthesis and chlorophyll fluorescence in maize (Zea mays L.) at seedling stage. Agric. Sci. 7(1), 44-53. Doi: 10.4236/as.2016.71005

Dark-adapted leaf. Photo: L.E. Cano-Gallego



  • Abstract
  • PDF

How to Cite

Cano-Gallego, L E, Minchalá-Buestan, N, Loaiza-Ruíz, R A, Cartagena-Valenzuela, J R, & Córdoba-Gaona, O de J. (2022). Gas exchange and chlorophyll fluorescence in spearmint (Mentha spicata L.) leaves influenced by mineral nutrition. Revista Colombiana de Ciencias Hortícolas, 16(1), e13685.



Section on aromatic, medicinal and spice plants