Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of salt (NaCl) concentrations in irrigation water on lettuce (Lactuca sativa L.) ‘Batavia’ growth

Abstract

Growth of lettuce ‘Batavia’ was evaluated at different salt concentrations in water irrigation under hydroponic conditions in the Bogotá plateau comparing the use of two substrates: blonde peat and a mixture between rice husk and blonde peat in 1:1 ratio. The evaluated variables: plant height, plant leaves number, dry weight, fresh weight and leaf area. These variables ere used to state the growth parameters: Leaf area index (LAI), specific leaf area (SLA), net assimilation rate (NAR), growth absolute rate (GAR), growth relative rate (RGR) and crop growth rate (CGR). Difference was observed pronounced in the height of the plant between treatments, being higher the height of plants sowed in peat. The biggest leaf number appeared in the plants established in peat without addition of NaCl, with 35 leaves in average. There was a reduction in foliar area as salt concentrations were increased. It was observed that the reduction of the leaves dry weight of plants established in mixed substrates was 38%, with regard to the treatments established in peat. The salinity affects vegetative and reproductive stages of development and also causes reductions both in the biomass and in the yield of the culture. The best responses for all salt concentrations in the growth parameters, dry weight, and biomass accumulation were reported for plants sowed in blonde peat, due to a more controllable salinity in this substrate.

Keywords

Substrates, Salinity, Dry mass, Growth parameters

PDF (Español)

References

  1. Alarcón, J.J., M.C. Bolarin, M.J. Sánchez-Blanco y A. Torrecillas. 1994. Growth, yield and water relations of normal fruited and cherry tomato cultivars irrigated with saline water. J. Hort. Sci. 69(2), 383-388.
  2. Alarcón, A. 2000a. Introducción a los cultivos sin suelo. Sistemas y sustratos. pp. 191-204. En: Tecnología de Cultivos de alto rendimiento. Universidad Politécnica de Cartagena. Colombia.
  3. Alarcón, A. 2000b. Introducción a la fertirrigación: aspectos básicos. pp. 15-19. En: Tecnología de cultivos de alto rendimiento. Universidad Politécnica de Cartagena. Colombia.
  4. Argüello, E. y I. González. 1994. Efecto del manejo del suelo, aplicando enmiendas y modalidades de fertilización sobre el cultivo del repollo (Brassica oleraceae var. ‘Capitata’) en un suelo bajo estrés de salinidad. Trabajo de grado. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá. 56 p.
  5. Azcón-Bieto, J. y M. Talón. 2000. Fundamentos de fisiología vegetal. McGraw Hill-Interamericana, Madrid. 522 p.
  6. Barraza, F., G. Fischer y C. Cardona. 2004. Estudio del proceso de crecimiento del cultivo del tomate (Lycopersicon esculentum Mill.) en el valle del Sinú medio, Colombia. Agron. Colomb. 21(1), 81-90.
  7. Cadahía, C. 2005. Fertirrigación. Cultivos hortícolas y ornamentales. Mundi-Prensa, Madrid. 681 p.
  8. Charles-Edwards, D. A., D. Doley y G. Rimmington. 1986. Modelling plant growth and development Academic Press, Australia. 235 p.
  9. Chartzoulakis, K. y G. Klapaki. 2000. Effects of NaCl salinity on growth and yield of two pepper cultivars. Acta Hort. 511, 143-149.
  10. Davies, W. y L. González. 2003. Crecimiento vegetal y estrés ambiental: papel de las hormonas vegetales en las respuestas de tolerancia a la sequía del suelo. En: La ecofisiología vegetal: una ciencia de síntesis. Paraninfo S.A. pp. 621-632.
  11. De Pascale, S. y G. Barbieri. 1995. Effects of soil salinity from long-term irrigation with saline-sodic water on yield and quality of winter vegetable crops. Scientia Hort. 64, 145-157.
  12. Flórez, L. y D. Miranda. 2005. Efecto de la salinidad sobre la dinámica de nutrientes en la fase vegetativa del cultivo de lulo (Solanum quitoense L.), en diferentes sustratos. Trabajo de grado. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá.
  13. Flowers, T.J., P.F. Troke y A.R. Yeo. 1977. The mechanisms of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89-121.
  14. González, M., L. González y R. Ramírez. 2002. Aspectos generales sobre la tolerancia a la salinidad en las plantas cultivadas. Cultivos Tropicales 23(2), 27-37.
  15. Grattan, S. 2002. Irrigation Water Salinity and Crop Production. University of California, Division of Agriculture and Natural Resources. En: http://www.anrcatalog.ucdavis.edu/pdf/8066.pdf; consulta: julio de 2006.
  16. Grattan, S.R. y C.M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Scientia Hort. 78, 127-157.
  17. Greenway, H. y R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant. Physiol. 31, 149-190.
  18. Greenway, H., R. Munns y J. Wolfe. 1983. Interactions between growth, Cl- and Na+ uptake, and water relations of plants in saline environments I. Slightly vacuolated cells. Plant Cell Environ. 6, 567-574.
  19. Kalaji, M. y S. Pietkiewicz. 1993. Salinity effects on plant growth and other physiological processes. Acta Physiol. Plant. 15(2), 89-124.
  20. Maas, E. 1994. Testing crops for salinity tolerance U.S. salinity laboratory. pp. 234-247. USDA-ARS. Riverside, CA.
  21. McCall, D. y A. Brazaityte. 1997. Salinity effects on seedlig growth and floral initiation in the tomato, Acta Agric. Scand. Sect. B, Soil Plant Sci. 47(4), 248-252.
  22. Marschner, H. 2002. Mineral nutrition of higher plants. Academic Press, Londres.
  23. Medrano, H y J. Flexas. 2003. Respuesta de las plantas al estrés hídrico. pp. 253-286. En: La ecofisiología vegetal: una ciencia de síntesis. Paraninfo S.A.
  24. Mizrahi, Y. y D. Pasternak. 1985. Effect of salinity of various agricultural crops. Plant Soil 89, 301-307.
  25. Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16, 15-24.
  26. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250.
  27. Neumann, P. 1997. Salinity resistance and plant growth revisited. Plant Cell Environ. 20, 1193-1198.
  28. Ramírez, C. 2003. Análisis de la fisiología de la nutrición mineral en plantas de clavel miniatura (Dianthus caryophyllus cv. Rony) en condiciones de producción a nivel comercial. Tesis de maestría en Ciencias Agrarias. Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá.
  29. Razi, M.I. y S.W. Burrage. 1991. Growth and physiological changes of NFT-grown tomatoes as influenced by salinity, vapor pressure deficit and root temperature. Pertanika 14(2), 119-124.
  30. Reigosa, M. y P. Nuria. 2003. La ecofisiología vegetal. En: La ecofisiología vegetal: una ciencia de síntesis. Paraninfo S.A. pp. 1-58.
  31. Salisbury, F. y C. Ross, 1992. Fisiología de las plantas. Thomson Learning, España. pp. 69-70.
  32. Sánchez-Blanco, M.J., M.C. Bolarine, J.J. Alarcon y A. Torrecillas. 1991. Salinity effects on water relations in Lycopersicon esculentum and its wild salt-tolerance relative species L. pennellii. Physiol. Plant. 83(2), 269-274.
  33. Taiz, L. y E. Zeiger. 1998. Plant Physiology. Sinauer Associates Publ., Sunderland.
  34. Tedeschi A y R. Dell’Aquilla. 2005. Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agr. Water Mgt. 77, 308-322.
  35. Willadino, L y V. Camara. 2003. Origen y naturaleza de los ambientes salinos. pp. 303-330. En: La ecofisiología vegetal: una ciencia de síntesis. Paraninfo S.A.
  36. Yurtseven, E., G.D. Kesmez y A. Unlukara. 2005. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agr. Water Mgt. 78, 128-135.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.