Genotype-environment interaction and guata potato yield (Solanum tuberosum L.) in the Department of Nariño (Colombia)

Authors

  • Astrid Viviana Santacruz-Benavides Universidad de Nariño, Faculty of Agricultural Sciences, Grupo de Investigación en Producción de Frutales Andinos (GPFA), San Juan de Pasto https://orcid.org/0000-0002-3306-6263
  • Wilmer Libey Delgado-Gualmatán Universidad de Nariño, Faculty of Agricultural Sciences, Grupo de Investigación en Producción de Frutales Andinos (GPFA), San Juan de Pasto https://orcid.org/0000-0001-7349-0889
  • Tulio César Lagos-Burbano Universidad de Nariño, Faculty of Agricultural Sciences, Grupo de Investigación en Producción de Frutales Andinos (GPFA), San Juan de Pasto https://orcid.org/0000-0001-9222-4674
  • David-Esteban Duarte-Alvarado Universidad de Nariño, Faculty of Agricultural Sciences, Grupo de Investigación en Producción de Frutales Andinos (GPFA), San Juan de Pasto https://orcid.org/0000-0002-8896-3594

DOI:

https://doi.org/10.17584/rcch.2021v15i3.12872

Keywords:

AMMI, Genotype by environment, Variation, Stability, Andean tubers

Abstract

Estimating the genotype-environment interaction (GEI) for potato genotype yield is very useful for the identification of outstanding genetic material that can adapt to specific environmental conditions and shows productive potential for breeding programs, selection processes and cultivar recommendations because it improves the efficiency of the genetic improvement process. The objective of this study was to determine the GEI of yield, expressed as t ha-1, in 21 potato genotypes. Four municipalities in the Department of Nariño were considered: Tangua, Pupiales, Imues, and Pasto. A randomized complete block design and an additive main effects and multiplicative interaction model (AMMI model) were used. Highly significant differences between the environments were found across the genotypes and GEI. Of the total variation, 42.43% was explained by the environment, 13.84% by the genotypes, and 15.49% by the GEI. The genotypes that showed stable behaviors were UdenarStGua55, UdenarStGua78, UdenarStGua24, UdenarStGua61, UdenarStGua20, and UdenarStGua98. Genotypes UdenarStGua78 and UdenarStGua98 stood out with 53.49 and 48.42 t ha-1 . Furthermore, genotypes UdenarStGua93, UdenarStGua97, and UdenarStGua91 showed a positive interaction with the environments of Tangua and Pupiales. Similarly, genotypes UdenarStGua58, UdenarStGua83, UdenarStGua57, and UdenarStGua87 positively interacted with Pasto, while genotypes UdenarStGua78 and UdenarStGua98 showed positive interactions with Imues. The genotypes displayed different behaviors in response to the areas where they were established, which varied in altitude, soil type, and environmental conditions.

JEL Classification

Array

Downloads

Download data is not yet available.

References

Abbott, L. and S. Pistorale. 2011. Análisis de la estabilidad y adaptabilidad de caracteres de interés agronómico en genotipos selectos de cebadilla criolla (Bromus catharticus). Agriscientia 28(2), 109-117. Doi: 10.31047/1668.298x.v28.n2.2788

Adebola, P.O., A.G. Shegro, S.M. Laurie, L.N. Zulu, and M. Pillay. 2013. Genotype x environment interaction and yield stability estimate of some sweet potato (Ipomoea batatas (L.) Lam) breeding lines in South Africa. J. Plant Breed. Crop Sci. 5(9), 182-186. Doi: 10.5897/JPBCS2013.0387

Affleck, I., J.A. Sullivan, R. Tarn, and D.E. Falk. 2008. Genotype by environment interaction effect on yield and quality of potatoes. Can. J. Plant Sci. 88(6), 1099-1107. Doi: 10.4141/CJPS07207

Agronet. 2019. Estadísticas agropecuarias. In: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1; consulted: september, 2021.

Andrade, M.I., A. Naico, J. Ricardo, R. Eyzaguirre, G.S. Makunde, R. Ortiz, and W. Grüneberg. 2016. Genotype x environment interaction and selection for drought adaptation in Sweet potato (Ipomoea batatas [L] Lam) in Mozambique. Euphytica 209, 261-280. Doi: 10.1007/s10681-016-1684-4

Bassa, D., F. Gurmu, and H. Mohammed. 2019. Comparison of univariate and multivariate models to analyze stability of common bean (Phaseolus vulgaris L.) genotypes in Ethiopia. Agrotechnology 8(2), 188. Doi: 10.35248/2168-9881.19.8.188

Berdugo-Cely, J., R.I. Valbuena, E. Sánchez-Betancourt, L.S. Barrero, and R. Yockteng. 2017. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLOS ONE 12(3), e0173039. Doi: 10.1371/journal.pone.0173039

Cabrera, H. 2019. Parámetros de estabilidad genético del rendimiento de ocho genotipos de papa (Solanum tuberosum L.), evaluados en seis localidades de la sierra norte del Perú. PhD thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Cajamarca. Cajamarca, Peru.

Calliope, S.R., M.O. Lobo, and N.C. Sammán. 2018. Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization. Food Chem. 238, 42-50. Doi: 10.1016/j.foodchem.2016.12.074

Caro Castro, J., C. Mateo Tuesta, J. Cisneros Mosco, N. Galindo Cabello, and J. León Quispe. 2019. Aislamiento y selección de actinomicetos rizosféricos con actividad antagonista a fitopatógenos de la papa (Solanum tuberosum spp. andigena). Ecol. Aplic. 18(2), 101-109. Doi: 10.21704/rea.v18i2.1329

Cooper, M. and D.E. Byth. 1996. Understanding plant adaptation to achieve systematic applied crop improvement: A fundamental challenge. pp. 5-23. In: Cooper, M. and G.L Hammer (eds.). Plant adaptation and crop improvement. CAB International and IRRI, UK.

Crossa, J., H.G. Gauch Jr., and R.W. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Breed. Genet. Cytol. 30(3), 493-500. Doi: 10.2135/cropsci1990.0011183X003000030003x

de Almeida, F.M., G.J. Gonçalves Pereira, J. Arzuaga Sánchez, W. Torres de la Noval, , J.A. Cabrera Rodríguez, and A. Hernández Jiménez. 2015. Principales problemáticas que afectan el desarrollo del cultivo de la papa (Solanum tuberosum L.) en diferentes municipios de la provincia Huambo, Angola. Cult. Trop. 36(4), 100-107.

De la Cruz, C. 2015. Estudio de adaptación de ocho genotipos de papa (Solanum tuberosum) con características de agroindustria en dos localidades de la Sierra Norte. Undergraduate thesis. Facultad de Ciencias Agrícolas, Universidad Central del Ecuador, Quito.

De la Cruz-Lázaro, E., G. Castañón-Ñajera, N.P. Brito-Manzano, A. Gómez-Vázquez, V. Robledo-Torres, and R.J. Lozano del Río. 2010. Heterosis and combining ability of tropical maize populations. Int. J. Exp. Bot. 79, 11-17. Doi: 10.32604/phyton.2010.79.011

Elias, A.A., K.R. Robbins, R.W. Doerge, and M.R. Tuinstra. 2016. Half a century of studying genotype x environment interactions in plant breeding experiments. Crop Sci. 56(5), 2090-2105. Doi: 10.2135/cropsci2015.01.0061

Gauch, H.G. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 46(4), 1488-1500. Doi: 10.2135/cropsci2005.07-0193

Gedif, M. and D. Yigzaw. 2014. Genotype by environment interaction analysis for tuber yield of potato (Solanum tuberosum L.) using a GGE biplot method in Amhara Region, Ethiopia. Agric. Sci. 5(4), 239-249. Doi: 10.4236/as.2014.54027

Ghislain, M., D. Andrade, F. Rodriguez, R.J. Hijmans, and D.M. Spooner. 2006. Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor. Appl. Genet. 113(8), 1515-1527. Doi: 10.1007/s00122-006-0399-7

Gil-Rivero, E., E. Lopéz-Médina, J. Mostacero-León, and A.J. De la Cruz-Castillo. 2019. Papas nativas con potencial antioxidante, cultivadas en el norte del Perú. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 18(3), 289-324.

Habtamu, G., M. Wahassu, and S. Beneberu. 2016. Evaluation of processing attributes of potato (Solanum tuberosum L.) varieties in Easter Ethiopia. Greener J. Plant Breed. Crop Sci. 4(2), 37-48. Doi: 10.15580/GJPBCS.2016.1.102315148

Hallauer, A.R., W.A. Russell, and K.R. Lamkey. 1988. Corn breeding. pp. 463-564. In: Sprague, G.F. and J.W. Dudley (eds.). Corn and corn improvement. Vol. 18. American Society of Agronomy, Madison, WI. Doi: 10.2134/agronmonogr18.3ed.c8

Hassanpanah, D. 2011. Analysis of G × E interaction using the additive main effects and multiplicative interaction (AMMI) in potato cultivars. Afr. J. Biotechnol. 10(2), 154-158.

Haynes, K.G., D.M. Gergela, C.M. Hutchinson, G.C. Yencho, M.E. Clough, M.R. Henninger, D.E. Halseth, E. Sandsted, G.A. Porter, and P.C. Ocaya. 2012. Early generation selection at multiple locations may identify potato parents that produce more widely adapted progeny. Euphytica 186(2), 573-583. Doi: 10.1007/s10681-012-0685-1

ICA, Instituto Colombiano Agropecuario. 2011. Manejo fitosanitario del cultivo de la papa (Solanum tuberosum subsp. Andigena y S. phureja) - Medidas para la temporada invernal. Bogota.

Iragaba, P. 2014. Inheritance and stability of earliness in potato (Solanum tuberosum L.). MSc thesis. College of Postgraduates, Makerere University, Kampala.

Khoury, C.K., H.A. Achicanoy, A.D. Bjorkman, C. Navarro-Racines, L. Guarino, X. Flores-Palacios, J.M.M. Engels, J.H. Wiersema, H. Dempewolf, S. Sotelo, J. Ramírez-Villegas, N.P. Castañeda-Álvarez, C. Fowler, A. Jarvis, L.H. Rieseberg, and P.C. Struik. 2016. Origins of food crops connect countries worldwide. Proc. Royal Soc. B: Biol. Sci. 283(1832), 18-32. Doi: 10.1098/rspb.2016.0792

Lozano-Ramírez, Á., A. Santacruz-Varela, F. San-Vicente-García, J. Crossa, J. Burgueño, and J.D. Molina-Galán. 2015. Modelación de la interacción genotipo x ambiente en rendimiento de híbridos de maíz blanco en ambientes múltiples. Rev. Fitotec. Mex. 38(4), 337-347. Doi: 10.35196/rfm.2015.4.337

Lule, D.D., M. Fetene, S. de Villiers, and K. Tesfaye. 2014. Additive main effects and multiplicative interactions (AMMI) and genotype by environment interaction (GGE) biplot analyses aid selection of high yielding and adapted finger millet varieties. J. Appl. Biosci. 76(3), 6291-6303. Doi: 10.4314/jab.v76i1.1

MADR, Ministerio de Agricultura y Desarrollo Rural. 2020. Cadena de la papa. Dirección de Cadenas Agrícolas y Forestales, Bogota.

Maharana, J., C.M. Panda, and P. Jakhar. 2017. Genotype x environment interaction and stability analysis of kharif potato in Koraput Region of Odisha. Int. J. Curr. Microbiol. Appl. Sci. 6(5), 1159-1166. Doi: 10.20546/ijcmas.2017.605.126

Marcillo Paguay, C.A., C.A. Benavides Cardona, C. Guatusmal Gelpud, S.N. Yandar Erazo, and J.V. Romero. 2021. Zona papera nariñense: una mirada a los ambientes productivos. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Mosquera, Colombia. Doi: 10.21930/agrosavia.nbook.7404777

Márquez-Vasallo, Y., J.L. Salomón-Díaz, and R. Acosta-Roca. 2020. Análisis de la interacción genotipo ambiente en el cultivo de la papa (Solanum tuberosum L.). Cul. Trop. 41(1), 10.

Martín Martín, R. and E.. Jerez Mompie. 2017. Efecto de las temperaturas en el rendimiento de la papa (Solanum tuberosum L.) variedad Romano. Cult. Trop. 38(1), 75-80.

Mohammadi, M., T. Hosseinpour, M. Armion, H. Khanzadeh, and H. Ghojogh. 2016. Analysis of genotype, environment and genotype x environment interaction in bread wheat genotypes using GGE biplot. Agric. Commun. 4(3), 1-8.

Mohammed, W. 2017. Genotype x environment interaction, stability and co-heritability of tuber internal quality traits in potato (Solanum tuberosum L.) cultivars in Ethiopia. Afr. J. Food Agric. Nutr. Dev. 17(4), 12930-12952. Doi: 10.18697/ajfand.80.16245

Muthoni, J., H. Shimelis, and R. Melis. 2015. Genotype x environment interaction and stability of potato tuber yield and bacterial wilt resistance in Kenya. Am. J. Potato Res. 92, 367-378. Doi: 10.1007/s12230-015-9442-z

Muñoz, L.A. and A.M. Lucero. 2008. Efecto de la fertilización orgánica en el cultivo de papa criolla Solanum phureja. Agron. Colomb. 26(2), 340-346.

Negash, A.W., H. Mwambi, T. Zewotir, and G. Taye 2013. Additive main effects and multiplicative interactions model (AMMI) and genotype main effect and genotype by environment interaction (GGE) biplot analysis of multi environmental wheat variety trials. Afr. J. Agric. Res. 8(12), 1033-1040. Doi: 10.5897/AJAR2012.6648

Picardi, L.A. 2018. El mejoramiento vegetal en estos días. In: Proc. Comunicaciones Libres: Mejoramiento Genético Vegetal. J. Basic Appl. Genet. 29(Suppl. l), 31.

Porras Rodríguez, P.D. C.A. Herrera Heredia. 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia. Corpoica, Mosquera, Colombia. Doi: 10.21930/978-958-740-210-0

R Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Roa, S., C. Barboza, and A. Zambrano. 2010. Estabilidad del rendimiento de variedades de papa (Solanum tuberosum L.) para procesamiento industrial en el estado Táchira, Venezuela. Rev. Fac. Agron. (LUZ) 27(2), 173-192.

Salcedo, S. and L. Guzmán (eds.). 2014. Agricultura familiar en América Latina y el Caribe: Recomendaciones de política. FAO, Santiago.

Salomón, J.L., J.G. Castillo, J.A. Arzuaga, W. Torres, A. Caballero, M. Varela, and V.M. Hernández Betancourt. 2015. Analysis of progeny-environment interaction with seedling tubers of true potato seed (Solanum tuberosum L.) in Cuba. Cult. Trop. 36(2), 83-89.

Sepúlveda-Cano, P.A., A.H. Smith-Pardo, and R.A. Hoyos S. 2017. Effect of the spatial arrangement of agroecosystem on bee (Hymenoptera: Apoidea) diversity in potato (Solanum tuberosum) crops of Antioquia, Colombia. Rev. Colomb. Entomol. 43(1), 55-63. Doi: 10.25100/socolen.v43i1.6650

Shahriari, Z., B. Heidari, and A. Dadkhodaie. 2018. Dissection of genotype x environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses. PLOS ONE 13(5), e0196095. Doi: 10.1371/journal.pone.0196095

Sharifi, P., H. Aminpanah, R. Erfani, A. Mohaddesi, and A. Abbasian. 2017. Evaluation of genotype x environment interaction in rice based on AMMI model in Iran. Rice Sci. 24(3), 173-180. Doi: 10.1016/j.rsci.2017.02.001

Sleper, D.A. and J.M. Poehlman. 2006. Breeding field crops. 5th ed. Blackwell Publishing, Ames, IA.

Tena, E., F. Goshu, H. Mohamad, M. Tesfa, D. Tesfaye, and A. Seife. 2019. Genotype x environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent Food Agric. 5(1), 1651925. Doi: 10.1080/23311932.2019.1651925

Tirado Malaver, R.H. 2019. Sustentabilidad y desempeño agronómico de genotipos de papa (Solanum tuberosum l.) en la provincia de Cutervo, Cajamarca, Perú. PhD thesis. Escuela de Posgrado. Universidad Nacional Agraria La Molina. Lima, Peru.

Tirado-Lara, R., R. Tirado-Malaver, E. Mayta-Huatuco, and W. Amoros-Briones. 2020. Identificación de clones de papa con pulpa pigmentada de alto rendimiento comercial y mejor calidad de fritura: Estabilidad y análisis multivariado de la interacción genotipo-ambiente. Sci. Agropec. 11(3), 323-334. Doi: 10.17268/sci.agropecu.2020.03.04

Tirado M., R., R. Tirado L., and J. Mendoza C. 2018. Interacción genotipo x ambiente en rendimiento de papa (Solanum tuberosum L.) con pulpa pigmentada en Cutervo, Perú. Chil. J. Agric. Anim. Sci. 34(3), 191-198. Doi: 10.4067/S0719-38902018005000502

Thiyagu, D., M.Y. Rafii, T.M.M. Mahmud, M.A. Latif, M.A. Malek, and G. Sentoor. 2013. Genetic variability of sweet potato (Ipomoea batatas Lam.) genotypes selected for vegetable use. J. Food Agric. Environ. 11(2), 340-344.

Vargas Hernández, M. and J. Crossa. 2000. El análisis AMMI y la gráfica del biplot en SAS. CIMMYT, México, DF.

Vargas, M., J. Crossa, F.A. Van Eeuwijk, M.E. Ramírez, and K. Sayre. 1999. Using partial least squares regression, factorial regression, and AMMI models for interpreting genotype x environment interaction. Crop Sci. 39(4), 955-967. Doi: 10.2135/cropsci1999.0011183X003900040002x

Vásquez A., V., H.A. Cabrera H., L.A. Jiménez D., and A. Colunche. 2019. Estabilidad del rendimiento de genotipos de papa (Solanum tuberosum L.). Ecol. Aplic. 18(1), 59-65. Doi: 10.21704/rea.v18i1.1307

Vásquez A., V., P. Huerta F., H. Cabrera H., and L. Jiménez D. 2021. Interacción genotipo-ambiente en el rendimiento de genotipos de papa. Rev. Mex. Cienc. Agríc. 12(2), 175-182.

Yahaya, S.U., A.M. Saad, S.G. Mohammed, and S.O. Afuape. 2015. Evaluating the performance of improved sweet potato (Ipomoea batatas L. Lam) advanced lines in Kano, Sudan savanna of Nigeria. Int. J. Agron. Agric. Res. 7(4), 52-60.

Yan, W. and N.A. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 86(3), 623-645. Doi: 10.4141/P05-169

Yan, W., L.A. Hunt, Q. Sheng, and Z. Szlavnics. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40(3), 597-605. Doi: 10.2135/cropsci2000.403597x

Genotypes de potato Photo: A.V. Santacruz-Benavides.

Downloads

Published

2021-09-01

How to Cite

Santacruz-Benavides, A. V., Delgado-Gualmatán, W. L., Lagos-Burbano, T. C., & Duarte-Alvarado, D.-E. (2021). Genotype-environment interaction and guata potato yield (Solanum tuberosum L.) in the Department of Nariño (Colombia). Revista Colombiana De Ciencias Hortícolas, 15(3), e12872. https://doi.org/10.17584/rcch.2021v15i3.12872

Issue

Section

Vegetable section

Metrics

Most read articles by the same author(s)