Physiological and morphological features denote that salt stress in Stevia rebaudiana is based on nonstomatic instead of stomatic limitation
DOI:
https://doi.org/10.17584/rcch.2021v15i3.12928Keywords:
Biomass distribution, Disruption between energy input and photosynthesis, Gas exchange, Salinity, Stomatal conductanceAbstract
Stevia rebaudiana is a very widespread plant throughout the world, due to the production of diterpenic steviol glycosides, with high sweetening power, being up to 300 times sweeter than sugar at a concentration of 0.4% (w/v). In the Colombian Caribbean, research has focused on evaluating the adaptation and management of commercial genotypes and experimental lines, however, their behavior against soil salinization is unknown. The objective of this research was to evaluate the response of some physiological and morphological characteristics of two promising genotypes against salt stress. The relationship between gas exchange, chlorophyll a fluorescence, and growth parameters was modulated as a function of the NaCl concentration. Although stomatal conductance and perspiration did not show a response to salt levels, the reduction in net photosynthesis as salinity increased was not associated with stomatal effects, but rather with a drop in the rate of electron transport, which articulates the absorption of light energy and its conversion into photoassimilates. Therefore, it could be inferred that salinity-stressed S. rebaudiana plants are more sensitive to non-stomatal limitation than to stomatal limitation.
Downloads
References
Acosta-Motos, J., L. Noguera-Vera, G. Barba-Espín, A. Piqueras, and J. Hernández. 2019. Antioxidant metabolism and chlorophyll fluorescence during the acclimatisation to ex vitro conditions of micropropagated Stevia rebaudiana Bertoni plants. Antioxidants 8(12), 615. Doi: 10.3390/antiox8120615
Basharat, S., Z. Huang, M. Gong, X. Lv, A. Ahmed, I. Hussain, J. Li, G. Du, and L. Liu. 2021. A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana. Chin. J. Chem. Eng. 30, 92-104. Doi: 10.1016/j.cjche.2020.10.018
Batista, K., W. Araújo, W. Antunes, P. Cavatte, G. Moraes, S. Martins, and F. DaMatta. 2012. Photosynthetic limitations in coffee plants are chiefly governed by diffusive factors. Trees 26, 459-468. Doi: 10.1007/s00468-011-0606-2
Brown, M. and A. Forsythe. 1974. Robust tests for equality of variances. J. Am. Stat. Assoc. 69(346), 364-367. Doi: 10.2307/2285659
Cantabella, D., A. Piqueras, J. Acosta-Motos, A. Bernal-Vicente, J. Hernández, and P. Díaz-Vivancos. 2017. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. Plant Physiol Biochem. 115, 484-496. Doi: 10.1016/j.plaphy.2017.04.023
Centritto, M., F. Loreto, and K. Chartzoulakis. 2003. The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. Plant Cell Environ. 26(4), 585-594. Doi: 10.1046/j.1365-3040.2003.00993.x
Cerqueira, J., J. Silveira, F. Carvalho, J. Cunha, and M. Neto. 2019. The regulation of P700 is an important photoprotective mechanism to NaCl‐salinity in Jatropha curcas. Physiol. Plant. 167(3), 404-417. Doi: 10.1111/ppl.12908
Chaves, M.M., J. Flexas, and C. Pinheiro. 2008. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103(4), 551-560. Doi: 10.1093/aob/mcn125
Debnath, M., N. Ashwath, and D. Midmore. 2019. Physiological and morphological responses to abiotic stresses in two cultivars of Stevia rebaudiana (Bert.) Bertoni. South Afr. J. Bot. 123, 124-132. Doi: 10.1016/j.sajb.2019.01.025
Dos Santos, O., K. Mendes, S. Martins, W. Batista-Silva, M. dos Santos, J. Figueiroa, E. Souza, D. Fernandes, W. Araujo, and M. Pompelli. 2019. Physiological parameters and plasticity as key factors to understand pioneer and late successional species in the Atlantic Rainforest. Acta Physiol. Plant. 41, 145. Doi: 10.1007/s11738-019-2931-9
Flexas, J. and H. Medrano. 2002. Drought‐inhibition of photosynthesis in C3 plants: Stomatal and non‐stomatal limitations revisited. Ann. Bot. 89(2), 183-189. Doi: 10.1093/aob/mcf027
Fonseca-Pereira, P., D. Daloso, J. Gago, A. Nunes-Nesi, and W. Araújo. 2019. On the role of the plant mitochondrial thioredoxin system during abiotic stress. Plant Signal Behav. 14(6), 1592536. Doi: 10.1080/15592324.2019.1592536
González, J., S. Eisa, S. Hussin, and F. Prado. 2015. Quinoa: An incan crop to face Global changes in agriculture. pp. 1-18. In: Murphy, K. and J. Matanguiban (eds.). Quinoa: Improvement and sustainable production. Wiley Blackwell, Hoboken, NJ. Doi: 10.1002/9781118628041.ch1
Hernández-Fernandéz, I., A. Jarma-Orozco, and M. Pompelli. 2021. Allometric models for non-destructive leaf area measurement of stevia: an in depth and complete analysis. Hortic. Bras. 39(2), 205-215. Doi: 10.1590/s0102-0536-20210212
Holbrook, N. 2015. Water balance of plants. pp. 99-118. In: Taiz, L., E. Zeiger, I. Moller, and A. Murphy (eds). Plant physiology and development. 6th ed. Sinauer Associates, Oxford.
Hsie, B., K. Mendes, W. Antunes, L. Endres, M. Campos, F. Souza, N. Santos, B. Singh, E. Arruda, and M. Pompelli. 2015. Jatropha curcas L. (Euphorbiaceae) modulates stomatal traits in response to leaf-to-air vapor pressure deficit. Biomass Bioenerg. 81, 273-281. Doi: 10.1016/j.biombioe.2015.07.014
Huang, L., Z. Li, Q. Liu, G. Pu, Y. Zhang, and J. Li. 2019. Research on the adaptive mechanism of photosynthetic apparatus under salt stress: New directions to increase crop yield in saline soils. Ann. Appl. Biol. 175, 1-17. Doi: 10.1111/aab.12510
Hussin, S., N. Geissler, M. El-Far, and H.-W. Koyro. 2017. Effects of salinity and short-term elevated atmospheric CO2 on the chemical equilibrium between CO2 fixation and photosynthetic electron transport of Stevia rebaudiana Bertoni. Plant Physiol. Biochem. 118, 178-186. Doi: 10.1016/j.plaphy.2017.06.017
Jarma-Orozco, A., E. Combatt-Caballero, and J. Jaraba.-Navas. 2020. Growth and development of Stevia rebaudiana Bert., in high and low levels of radiation. Curr. Plant Biol. 22, 100144. Doi: 10.1016/j.cpb.2020.100144
Mendes, K.R., J.A.A. Granja, J.P. Ometto, A.C.D. Antonio, R.S.C. Menezes, E.C. Pereira, and M.F. Pompelli. 2017. Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Func. Plant Biol. 44(10), 1039-1051. Doi: 10.1071/FP17098
Osmond, B., M. Badger, K. Maxwell, O. Björkman, and R. Leegood. 1997. Too many photons: photorespiration, photoinhibition and photooxidation. Trends Plant Sci. 2(4), 119-121. Doi: 10.1016/S1360-1385(97)80981-8
Pan, T., M. Liu, V. Kreslavski, S. Zharmukhamedov, C. Nie, M. Yu, V. Kuznetsov, S. Allakhverdiev, and S. Shabala. 2021. Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ. Sci. Technol. 51(8), 791-825. Doi: 10.1080/10643389.2020.1735231
Pinho-Pessoa, A.C.B., K.R. Mendes, A. Jarma-Orozco, M.P.S. Pereira, M.A. Santos, R.S.C. Menezes, J.P. Ometto, E.C. Pereira, and M.F. Pompelli. 2018. Interannual variation in temperature and rainfall can modulate the physiological and photoprotective mechanisms of a native semiarid plant species. Indian J. Sci. Technol. 11(41), 1-17. Doi: 10.17485/ijst/2018/v11i42/130972
Pompelli, M., R. Barata-Luís, H. Vitorino, E. Gonçalves, E. Rolim, M. Santos, J. Almeida-Cortez, V. Ferreira, E. Lemos, and L. Endres. 2010. Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenerg. 34(8), 1207-1215. Doi: 10.1016/j.biombioe.2010.03.011
Putnik, P., I. Bezuk, F. Barba, J. Lorenzo, I. Polunić and D. Bursać. 2020. Sugar reduction: Stevia rebaudiana Bertoni as a natural sweetener. pp. 123-152. In: Barba, F., P. Putnik, and D. Kovačević (eds.). Agri-food industry strategies for healthy diets and sustainability. Academic Press, San Diego, CA. Doi: 10.1016/B978-0-12-817226-1.00005-9
Ramesh, K.,V. Singh, and N. Megeji. 2006. Cultivation of stevia [Stevia rebaudiana (Bert.) Bertoni]: a comprehensive review. Adv. Agron. 89, 137-177. Doi: 10.1016/S0065-2113(05)89003-0
Reis, M., L. Coelho, G. Santos, U. Kienle, and J. Beltrão. 2015. Yield response of stevia (Stevia rebaudiana Bertoni) to the salinity of irrigation water. Agr. Water Manage. 152, 217-221. Doi: 10.1016/j.agwat.2015.01.017
Shahverdi, M., H. Omidi, and S. Tabatabaei. 2019. Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. J. Saudi Soc. Agric. Sci. 18(4), 355-360. Doi: 10.1016/j.jssas.2017.12.001
Shapiro, S. and M. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika. 52(3/4), 591-611. Doi: 10.2307/2333709
Silva-Santos, L., N. Corte-Real, J. Dias-Pereira, R. Figueiredo, L. Endres, and M. Pompelli. 2019. Salinity shock in Jatropha curcas leaves is more pronounced during recovery than during stress time. Braz. J. Dev. 5, 11359-11369. Doi: 10.1101/378208
Yu, B., J. Niu, J. Feng, M. Xu, X. Xie, W. Gu, S. Gao, and G. Wang. 2018. Regulation of ferredoxin-NADP+ oxidoreductase to cyclic electron transport in high salinity stressed Pyropia yezoensis. Front. Plant Sci. 9, 1092. Doi: 10.3389/fpls.2018.01092
Zeng, J., A. Chen, D. Li, B. Yi, and W. Wu. 2013. Effects of salt stress on the growth, physiological responses, and glycoside contents of Stevia rebaudiana Bertoni. J. Agric. Food Chem. 61(24), 5720-5726. Doi: 10.1021/jf401237x

Downloads
Published
-
Abstract243
-
PDF225
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Colombiana de Ciencias Hortícolas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.