SSR-HRM molecular characterization of the Colombian cultivated germplasm of Capsicum chinense Jacq. (Solanaceae)

Authors

  • José Enrique Lopéz-Candelo Universidad del Valle, Departamento de Biología, Grupo de Estudios Ecogenéticos y de Biología Molecular; Universidad del Valle, Centro de Investigación e Innovación en Bioinformática (CIBioFi), Santiago de Cali https://orcid.org/0000-0003-4062-4187
  • Ronald Andrés Viáfara-Vega Universidad del Valle, Departamento de Biología, Grupo de Estudios Ecogenéticos y de Biología Molecular; Universidad del Valle, Centro de Investigación e Innovación en Bioinformática (CIBioFi), Santiago de Cali https://orcid.org/0000-0001-7213-273X
  • Heiber Cárdenas-Henao Universidad del Valle, Departamento de Biología, Grupo de Estudios Ecogenéticos y de Biología Molecular; Universidad del Valle, Centro de Investigación e Innovación en Bioinformática (CIBioFi), Santiago de Cali https://orcid.org/0000-0003-2823-8443

DOI:

https://doi.org/10.17584/rcch.2022v16i2.13363

Keywords:

Artificial selection, Crop species identification and discrimination, Crop genetic diversity, Usefulness of single nucleotide polymorphisms

Abstract

This study was the first evaluation of the genetic diversity of cultivated populations of habanero pepper (Capsicum chinense) in Colombia using SSR-HRM. Three habanero pepper lines were characterized with eight microsatellite markers using the High-Resolution Melt (HRM) technique. Twenty-seven individuals from the HL-original line and 30 individuals each from derived lines HL-70 and HL67 were genotyped. Three microsatellites were monomorphic, and five were polymorphic; however, a high allelic diversity was detected in the homozygous state in the 87 individuals. The Ng8 marker differentiated the HL-original and HL-67 lines from the HL-70 line with HRM profiles. The analysis of molecular variance (AMOVA) revelated that 52% of the genetic variation existed within lines. The HL-67 line was more similar to the HL-original line than to the HL-70 line. HL-70 recorded the highest genetic diversity for the derived lines and, therefore, could be used in a new breeding program. In contrast, the HL-67 line, because of its high genetic homogeneity, could potentially be used to evaluate different environmental conditions to find optimal conditions that increase productivity and pungency. Finally, comparing the HRM profiles with the monomorphic markers (Ng 33, Ng 18 and Ng 10) differentiated the C. chinense and C. frutescens species, which was difficult because of high morphologic similarity between these two species and is usually evaluated at the flowering stage, while HRM profiles can be done at any plant stage.

Downloads

Download data is not yet available.

References

Barboza, G.E., C. Carrizo García, M. Scaldaferro, and L. Bohs. 2020. An amazing new Capsicum (Solanaceae) species from the Andean-Amazonian Piedmont. PhytoKeys 167, 13-29. Doi: https://doi.org/10.3897/phytokeys.167.57751

Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32(3), 314-331.

Contreras-Toledo, A.R., H. López-Sánchez, A. Santacruz-Varela, E. Valadez-Moctezuma, V.H. Aguilar-Rincón, T. Corona-Torres, and P.A. López. 2011. Diversidad genética en México de variedades nativas de chile ‘poblano’ mediante microsatélites. Rev. Fitotec. Mex. 34(4), 225-232. Doi: https://doi.org/10.35196/rfm.2011.4.225

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19(1), 11-15. Doi: https://doi.org/10.1007/978-3-642-60441-6_4

Estrada, S. and R. Baena. 2012. Mejoramiento de la productividad del ají, cultivares Cayena, Tabasco y Habanero, mediante la estabilización genética y fenotípica de un núcleo de semillas fundamental. Universidad Nacional de Colombia, Palmira, Bogota.

Excoffier, L. and H.E.L. Lischer. 2010. Arlequin Suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564-567. Doi: https://doi.org/10.1111/j.1755-0998.2010.02847.x

Falconer, D.S. and T.F.C. Mackay. 2001. Introducción a la genética cuantitativa. Editorial Acribia, Zaragoza, Spain.

Fraser, A.S. 1972. An introduction to population genetic theory. Crow, J.F. and M. Kimura (eds.). New York. 656 pp. 1970. Teratology 5, 386-387. Doi: https://doi.org/10.1002/tera.1420050318

González-Pérez, S., A. Garcés-Claver, C. Mallor, L.E. Sáenz de Miera, O. Fayos, F. Pomar, F. Merino, and C. Silvar. 2014. New insights into Capsicum spp relatedness and the diversification process of Capsicum annuum in Spain. PloS ONE 9(12), e116276. Doi: https://doi.org/10.1371/journal.pone.0116276

Guzmán, F.A., S. Moore, M. Carmen de Vicente, and M.M. Jahn. 2020. Microsatellites to enhance characterization, conservation and breeding value of Capsicum germplasm. Genet. Resour. Crop Evol. 67(3), 569-585. Doi: https://doi.org/10.1007/s10722-019-00801-w

Justino, E.V., M.E.N. Fonseca, M.E. Ferreira, L.S. Boiteux, P.P. Silva, and W.M. Nascimiento. 2018. Estimate of natural cross-pollination rate of Capsicum annuum using a codominant molecular marker associated with fruit pungency. Genet. Mol. Res. 17(1), gmr16039887. Doi: https://doi.org/10.4238/gmr16039887

Lee, J.M., S.H. Nahm, Y.M. Kim and B.D. Kim. 2004. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor. Appl. Genet. 108, 619-627. Doi: https://doi.org/10.1007/s00122-003-1467-x

Lee, H.-Y., N.-Y. Ro, H.-J. Jeong, J.-K. Kwon, J. Jo, Y. Ha, A. Jung, J.-W. Han, J. Venkatesh and B.-C. Kang. 2016. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm. BMC Genet. 17, 142. Doi: https://doi.org/10.1186/s12863-016-0452-8

Marcos Pérez, D. 2013. Caracterización molecular y análisis de diversidad genética en variedades de pimiento autóctonas de Galicia. MSc thesis. Facultade de Ciencias, Universidade da Coruña, La Coruña, Spain.

Nagy, I., A. Stágel, Z. Sasvári, M. Röder, and M. Ganal. 2007. Development, characterization, and transferability to other Solanaceae of microsatellite markers in pepper (Capsicum annuum L.). Genome 50(7), 668-688. Doi: https://doi.org/10.1139/g07-047

Nei, M. 1972. Genetic distance between populations. The American Naturalist 106(949), 283-292. Doi: https://doi.org/10.1086/282771

Nicolaï, M., M. Cantet, V. Lefebvre, A.-M. Sage-Palloix, and A. Palloix. 2013. Genotyping a large collection of pepper (Capsicum spp.) with SSR loci brings new evidence for the wild origin of cultivated C. annuum and the structuring of genetic diversity by human selection of cultivar types. Genet. Resour. Crop Evol. 60, 2375-2390. Doi: https://doi.org/10.1007/s10722-013-0006-0

Odland, M.L. and A.W. Porter. 1941. A study of natural crossing in pepper (Capsicum frutescens L.). J. Am. Soc. Hort. Sci. 38, 585-588.

Oyama, K., S. Hernández-Verdugo, C. Sánchez, A. González-Rodríguez, P. Sánchez-Peña, J.A. Garzón-Tiznado, and A. Casas. 2006. Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from northwestern Mexico analyzed by RAPDs. Genet. Resour. Crop Evol. 53(3), 553-562. Doi: https://doi.org/10.1007/s10722-004-2363-1

Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537-2539. Doi: https://doi.org/10.1093/bioinformatics/bts460

Ramírez, J.G., B.W. Avilés and E.R. Dzib. 2006. Áreas con potencial productivo para Chile Habanero (Capsicum chinense, Jacq) en el estado de Yucatán. pp. 66-67. In: Memoria Primera Reunión Nacional de Innovación Agrícola y Forestal (RENIAF). COFUPRO; SAGARPA-INIFAP; UACH, Merida, Mexico.

Rivera, A., A.B. Monteagudo, E. Igartua, A. Taboada, A. García-Ulloa, F. Pomar, M. Riveiro-Leira, and C. Silvar. 2016. Assessing genetic and phenotypic diversity in pepper (Capsicum annuum L.) landraces from North-West Spain. Sci. Hortic. 203, 1-11. Doi: https://doi.org/10.1016/j.scienta.2016.03.006

Shannon, C.E. 1948. A mathematical theory of communication. The Bell Syst. Tech. J. 27(3), 379-423, 623-656. Doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Silva Aguilar, F. 2011. Estimación de parámetros genéticos en el contenido de capsaicina y rendimiento en una cruza de pimentón cultivar serrano y ají cayenne (Capsicum annuum) por medio del análisis de medias generacionales. MSc thesis. Universidad Nacional de Colombia, Sede Palmira Facultad de Ciencias Agropecuarias, Palmira, Colombia.

Stewart Jr, C.N. and L.E. Via. 1993. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14(5), 748-751. Doi: https://doi.org/10.1007/978-3-642-60441-6_4

Tanksley, S.D. 1983. Molecular markers in plant breeding. Plant Mol. Biol. Rep. 1(1), 3-8. Doi: https://doi.org/10.1007/BF02680255

Viafara-Vega, R.A. and H. Cárdenas-Henao. 2018. Caracterización molecular de líneas de interés comercial de Capsicum frutescens (Solanaceae) presentes en un banco de semillas. In: XII Congreso Latinoamericano de Botánica. Asociación Latinoamericana de Botánica; Quito.

Wahyuni, Y., A.-R. Ballester, E. Sudarmonowati, R.J. Bino, and A.G. Bovy. 2011. Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: Variation in health-related compounds and implications for breeding. Phytochemistry 72(11-12), 1358-1370. Doi: https://doi.org/10.1016/j.phytochem.2011.03.016

Wright, S. 1931. Evolution in Mendelian populations. Genetics 16(2), 97-159. Doi: https://doi.org/10.1093/genetics/16.2.97

Xanthopoulou, A., I. Ganopoulos, G. Koubouris, A. Tsaftaris, C. Sergendani, A. Kalivas and P. Madesis. 2014. Microsatellite high-resolution melting (SSR-HRM) analysis for genotyping and molecular characterization of an Olea europaea germplasm collection. Plant Genet. Resour. 12(3), 273-277. Doi: https://doi.org/10.1017/S147926211400001X

Yumnam, J.S., W. Tyagi, A. Pandey, N.T. Meetei, and M. Rai. 2012. Evaluation of genetic diversity of chilli landraces from North Eastern India based on morphology, SSR markers and the Pun1 locus. Plant Mol. Biol. Rep. 30(6), 1470-1479. Doi: https://doi.org/10.1007/s11105-012-0466-y

Zhang, X.-M, Z.H. Zhang, X.-Z. Gu, S.-L- Mao, X.-X. Xiang, J. Chadoeuf, A. Palloix, L.-H. Whang, and B.-X. Zhang. 2016. Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution. J. Integr. Agric. 15(9), 1991-2001. Doi: https://doi.org/10.1016/S2095-3119(16)61364-3

Habanero pepper fruits. Photo: L.L. Arias

Downloads

Published

2022-05-01

How to Cite

Lopéz-Candelo, J. E., Viáfara-Vega, R. A., & Cárdenas-Henao, H. (2022). SSR-HRM molecular characterization of the Colombian cultivated germplasm of Capsicum chinense Jacq. (Solanaceae). Revista Colombiana De Ciencias Hortícolas, 16(2), e13363. https://doi.org/10.17584/rcch.2022v16i2.13363

Issue

Section

Vegetable section

Metrics