Producción de líneas de tomate “chonto”, Solanum lycopersicum Mill., con expresión del gen sp responsable del crecimiento determinado.

Contenido principal del artículo

Autores

Esteban Burbano E. https://orcid.org/0000-0001-5056-9893
Franco Alirio Vallejo C. https://orcid.org/0000-0002-4466-7881

Resumen

Se efectuó la introgresión del gen recesivo sp responsable del hábito de crecimiento determinado, presente en el tomate brasilero IPA 4, al tomate “chonto” colombiano UNAPAL-Maravilla, para modificar la arquitectura de la planta y contribuir a la reducción de costos de producción. En la generación F2 del retrocruzamiento cuatro (F2RC4) se llevó a cabo la selección de plantas que presentaban alturas menores a 150 cm, peso de fruto mayor a 90 g y formato de fruto ovalado. Se obtuvieron y evaluaron seis líneas de tomate “chonto” con hábito de crecimiento determinado y características propias de este cultivar. Se seleccionaron las líneas D5 y D6 porque presentaban crecimiento determinado con altura de planta de 109,30 y 114,40 cm, precocidad a cosecha de 87,70 y 87,20 días después del trasplante y producción de 4.116,60 y 4.029,70 g por planta, respectivamente.

Palabras clave:

Detalles del artículo

Licencia

El copyright de los artículos e ilustraciones son propiedad de la Revista Colombiana de Ciencias Hortícolas. Los editores autorizan el uso de los contenidos bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0). La citación correcta de los contenido deben registrar de forma explícita el nombre de la revista, nombre(s) del (de los) autor(es), año, título del artículo, volumen, número, página del artículo y DOI. Se requiere un permiso escrito a los editores para publicar más que un resumen corto del texto o las figuras.

Referencias

Baena, D.G., F.A. Vallejo y E.I.E. Salazar. 2003. Avance generacional y selección de líneas promisorias de tomate (Lycopersicon esculentum Mill) tipos chonto y milano. Acta Agron. 52(1), 1-9.

Carmel-Goren, L., Y.S. Liu, E. Lifschitz y D. Zamir. 2003. The SELF-PRUNING gene family in tomato. Plant Mol. Biol. 52(6), 1215-1222. Doi: 10.1023/B:PLAN.0000004333.96451.11

Carvalho, J.O., J.M. Luz, F.C. Juliatti, L.C. Melo, R.E. Teodoro y L.M. Lima. 2003. Desempenho de famílias e híbridos comerciais de tomateiro para processamento industrial com irrigação por gotejamento. Hortic. Bras. 21(3), 525-533. Doi: 10.1590/S0102-05362003000300023

FAOSTAT. 2014. Production. Crops data. Em: Em: http://www.fao.org/faostat/es/#data/QC.; consulta: marzo de 2017.

Filgueira, F.A.R. 1982. Manual de olericultura. Ed. Agronômica Ceres, São Paulo, Brasil.

Fridman, E., Y. Liu, L. Carmel-Goren, A. Gur, M. Shoresh, T. Pleban y D. Zamir. 2002. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol. Genet. Genom. 266(5), 821-826. Doi: 10.1007/s00438-001-0599-4

Krieger, U., Z.B. Lippman y D. Zamir. 2010. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat. Genet. 42(5), 459-463. Doi: 10.1038/ng.550

Ledo, F.J.D.S., J.P. De Campos, P.C.R. Fontes, J.A. Gomes y F.P. Reis. 1994. Comportamento de seis cultivares de tomate de crescimento determinado, sob três sistemas de condução da planta, na produção de frutos para consumo in natura. Ceres 42(240), 218-224.

Moya, C., M. Álvarez, D. Plana, M. Florido y C.J.B. Lawrence. 2005. Evaluación y selección de nuevas líneas de tomate (Lycopersicon esculentum Mill.) con altos rendimientos y frutos de alta calidad. Cultivos Tropicales 26(3), 39-43.

Nuez, V. F. 1995. El Cultivo del tomate. Mundi-Prensa. Madrid, España.

Pardey, C. 2008. Caracterización y evaluación de accesiones de Capsicum del Banco de germoplasma de la Universidad Nacional de Colombia sede Palmira y determinación del modo de herencia de la resistencia a potyvirus (Pepdmv). Tesis de doctorado. Facultad de Ciencias Agropecuarias, Universidad Nacional de Colombia, Palmira, Colombia.

Piotto, F.A. y L.E.P. Peres. 2012. Base genética do hábito de crescimento e florescimento em tomateiro e sua importância na agricultura. Ciênc. Rural 42(11), 1941- 1946. Doi: 10.1590/S0103-84782012001100006

Pnueli, L., L. Carmel-Goren, D. Hareven, T. Gutfinger, J. Alvarez, M. Ganal y E. Lifschitz. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125(11), 1979-1989.

Santiago, J., M. Mendoza y F. Borrego. 1998. Evaluación de tomate (Lycopersicon esculentum, Mill) en invernadero: criterios fenológicos y fisiológicos. Agron. Mesoamer. 9, 59-65.

Vallejo, F.A. 1999. Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia, Palmira, Colombia.

Vallejo, F.A., M.M. Espitia, E.I. Estrada y H. Ramírez. 2010. Genética vegetal. Universidad Nacional de Colombia, Palmira, Colombia.

Vallejo, F.A. y E.I. Estrada. 2002. Mejoramiento genético de plantas. Universidad Nacional de Colombia, Palmira, Colombia.

Vallejo, F. A. y E.I. Estrada. 2004. Producción de hortalizas de clima cálido. Universidad Nacional de Colombia, Palmira, Colombia.

Vallejo, F. A. , Messa, R.M. y M.E. Villafañe. 1994. Variabilidad genética y ambiental entre líneas de tomate “chonto”, Lycopersicon esculentum Mill., sin utilizar pruebas de progenie. Acta Agron. 44(1-4), 75-84.

Yelle, S., R.T. Chetelat, M. Dorais, J.W. DeVerna y A.B. Bennett. 1991. Sink metabolism in tomato fruit IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol. 95(4), 1026-1035. Doi: 10.1104/pp.95.4.1026

Descargas

La descarga de datos todavía no está disponible.