Diazotrophic bacteria in the growth of micropropagated ornamental pineapple

Main Article Content

Autores

Adriano Bortolotti Silva https://orcid.org/0000-0003-1316-8243
Ligiane Aparecida Florentino https://orcid.org/0000-0001-9092-3017
Dalvana de Sousa Pereira https://orcid.org/0000-0002-7996-638X
Paulo Roberto Correa Landgraf https://orcid.org/0000-0002-2518-9159
Ana Carolina Rodrigues Alves https://orcid.org/0000-0002-0769-9219
Plinio Rodrigues dos Santos-Filho https://orcid.org/0000-0001-8530-1977

Abstract

Ornamental pineapple is a hardy plant with significant landscaping value. Tissue culture of plants is viable for producing plants with a high phytosanitary quality. However, one of the difficulties with this cultivar is the acclimatization process, which is slow and can cause losses. The objective of the present study was to verify the potential of inoculation with diazotrophic bacteria for in vitro and ex vivo growth of ornamental pineapple. A group of diazotrophic bacterial strains selected at the Universidade José do Rosário Vellano (UNIFENAS) was prioritized in this study, and the treatments included bacterial strains UNIFENAS (100-13, 100-60, 100-68, 100-153, 100-167 and 100-198). These strains were evaluated in terms of their capacity to produce indole 3-acetic acid. Subsequently, plants were cultivated in a medium composed of MS medium salts (1/4), adding 1 mL of the bacterial strain. In the control treatment, the plants were maintained in 2 mL of MS medium. 7 days after inoculation, the plants were transplanted into the MS, where they were maintained for 30 days. After in vitro cultivation, the plants were transferred to pots containing commercial Plantmax® substrate and maintained under these conditions for 60 days. The diazotrophic bacteria were able to synthesize auxins, and their inoculation promoted greater growth in vitro and ex vitro in the plants. In the acclimatization phase, the plants inoculated with UNIFENAS strains (100-60, 100-68 and 100-153) promoted a higher shoot growth, chlorophyll content and nitrate reductase enzyme activity.

Keywords:

Article Details

Licence

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The copyright of the articles and illustrations are the property of the Revista Colombiana de Ciencias Hortícolas. The editors authorize the use of the contents under the Creative Commons license Attribution-Noncommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). The correct citation of the content must explicitly register the name of the journal, name (s) of the author (s), year, title of the article, volume, number, page of the article and DOI. Written permission is required from publishers to publish more than a short summary of the text or figures.

References

Amâncio, S., J.P. Rebordão, and M.M. Chaves. 1999. Improvement of acclimatization of micropropagated grapevine: photosynthetic competence and carbono allocation. Plant Cell Tiss. Org. Cult. 58(1), 31-37. Doi: 10.1023/A:1006323129593

Argenta, G., P.R.F. Silva, and C.G. Bortoloni. 2001. Clorofila na folha como indicador do nível de nitrogênio em cereais. Ciênc. Rural 31(4), 715-722. Doi: 10.1590/S0103-84782001000400027

Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vugaris. Plant Physiol. 24(1), 1-15. Doi: 10.1104/pp.24.1.1

Baldotto, L.E.B., M.A. Baldotto, F.L. Olivares, A.P. Viana, and R. Bressan-Smith. 2010. Seleção de bactérias promotoras de crescimento no abacaxizeiro cultivar Vitória durante a aclimatização. Rev. Bras. Ciênc. Solo 34(2), 349-360. Doi: 10.1590/S0100-06832010000200008

Barboza, S.B.S.C., D. Graciano-Ribeiro, J.B. Teixeira, T.A. Portes, and L.A.C. Souza. 2006. Anatomia foliar de plantas micropropagadas de abacaxi. Pesq. Agropec. Bras. 41(2), 185-194. Doi: 10.1590/S0100-204X2006000200002

Bashan, Y. and H. Levanony. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challange for agriculture. Can. J. Microbiol. 36(9), 591-608. Doi: 10.1139/m90-105

Berilli, S.S., A.J.C. Carvalho, S.J. Freitas, D.C. Farias, and C.S. Marinho. 2011. Avaliação do desenvolvimento de diferentes tamanhos de mudas micropropagadas de abacaxizeiro, após aclimatação. Rev. Bras. Frutic. 33(1), 208-214. Doi: 10.1590/S0100-29452011005000018

Bregonci, S.I., E.F. Reis, G.D. Almeida, V.J. Brum, and M. Zucoloto. 2008. Avaliação do crescimento foliar e radicular de mudas micropropagadas do abacaxizeiro cv. gold em aclimatação. Idesia 26(3), 87-96. Doi: 10.4067/S0718-34292008000300010

Carvalho, L.C., M.L. Osório, M.M. Chaves, and S. Amâncio. 2001. Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tiss. Org. Cult. 67(3), 271-280. Doi: 10.1023/A:1012722112406

Cassán, F., J. Vanderleyden, and S. Spaepen. 2014. Physiological and agronomical aspects of phytohormone production by model Plant-Growth-Promoting Rhizobacteria (PGPR) belonging to the Genus Azospirillum. J. Plant Growth Regul. 33(2), 440-459. Doi: 10.1007/s00344-013-9362-4

Cataldo, D.A., M. Haaroon, L.E. Schrader, and V.L. Young. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Comm. Soil Sci. Plant Anal. 6(1), 71-80. Doi: 10.1080/00103627509366547

Dias, A.C.F., F.E.C. Costa, F.D. Andreote, P.T. Lacava, M.A. Teixeira, L.C. Assumpção, W.L. Araújo, J.L. Azevedo, and I.S. Melo. 2009. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J. Microbiol. Biotechnol. 25(2), 189-195. Doi: 10.1007/s11274-008-9878-0

Donato, V.M.T.S., A.G. Andrade, E.S. Souza, J.G. França, and G.A. Maciel. 2004. Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesq. Agropec. Bras. 39(11), 1087-1093. Doi: 10.1590/S0100-204X2004001100006

FAO. 2016. FAOSTAT. In: http://faostat.fao.org/; consulted: September, 2016.

Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciênc. Agrotec. 35(6), 1039-1042. Doi: 10.1590/S1413-70542011000600001

Florentino, L.A., A.B. Silva, P.R.C. Landgraf, and F.R.C. Souza. 2017. Inoculação de bactérias produtoras de ácido 3-indol acético em plantas de alface (Lactuca sativa L.). Rev. Colomb. Cienc. Hortic. 11(1), 89-96. Doi: 10.17584/rcch.2017v11i1.5780

Freitas, S.J., P.C. Santos, A.J.C. Carvalho, S.S. Berilli, and M.M.A. Gomes. 2012. Brassinosteroide e adubação nitrogenada no crescimento e estado nutricional de mudas de abacaxizeiro provenientes do seccionamento de caule. Rev. Bras. Frutic. 34(2), 612-618. Doi: 10.1590/S0100-29452012000200037

Gordon, S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26(1), 192-195. Doi: 10.1104/pp.26.1.192

Hazarika, B.N. 2006. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 108(2), 105-120. Doi: 10.1016/j.scienta.2006.01.038

Li, J.H., E.T. Wang, W.F. Chen, and W.X. Chen. 2008. Genetic diversity and potencial for promotion of plant growth detected in nodule endophtic bacteria of soybean grown in Heilongjiang province of China. Soil Biol. Biochem. 40(1), 238-246. Doi: 10.1016/j.soilbio.2007.08.014

Lima, M.G.S., C.R. Mendes, R. Nascimento, N.F. Lopes, and M.A.P. Carvalho. 2009. Avaliações bioquímicas das plantas de milho pulverizadas com ureia isolada e em associação com aminoácidos. Ceres 53(3), 358-363.

Magalhães, F.M.M. and J. Döbereiner. 1984. Ocorrência de Azospirillum amazonense em alguns ecossistemas da Amazônia. R. Microbiol. 15(4), 246-252.

Marcos, F.C.C., R.P.F. Iório, A.P.D. Silveira, R.V. Ribeiro, E.C. Machado, and A.M.M.A. Lagoa. 2016. Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75(1), 1-9. Doi: 10.1590/1678-4499.256

Matos, A.P., N.F. Sanches, F.A. Teixeira, A.H. Simão, D.C. Gomes, and J.E. Júnior. 2009. Monitoramento da fusariose em plantios de abacaxi ‘Pérola’ conduzidos em sistema de produção integrada no Estado do Tocantins. Documentos 184. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, Brazil.

Moreira, F., K. Silva, R.S.A. Nobrega, and F. Carvalho. 2010. Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Com. Sci. 1(2), 74-99.

Moreira, F.M.S. and J.O. Siqueira. 2002. Microbiologia e bioquímica do solo. 2nd ed. Editora UFLA, Lavras, Brazil.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tabacco tissue cultures. Physiol. Plant. 15(3), 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Oliveira, Y., J.I. Anselmini, F.L. Cuquel, F. Pinto, and M. Quoirin. 2010. Pré-aclimatização in vitro de abacaxi-ornamental. Ciênc. Agrotec. 34 (Num. Spe.), 1647-1653. Doi: 10.1590/S1413-70542010000700010

Oliveira, A.L.M., E.L. Canuto, S. Urquiaga, V.M. Reis, and J.I. Baldani. 2006. Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284(1-2), 23-32. Doi: 10.1007/s11104-006-0025-0

Pedrinho, E.A.N., R.R. Galdiano Júnior, J.C. Campanharo, L.M.C. Alves, and E.G.M. Lemos. 2010. Identificação e avaliação de rizobactérias isoladas de raízes de milho. Bragantia 69(4), 905-911. Doi: 10.1590/S0006-87052010000400017

Romeiro, R.S. 2001. Métodos em bacteriologia de plantas. Editora UFV, Viçosa, Brazil.

Ryan, R.P., K. Germaine, A. Franks, D.J. Ryan, and D.N. Dowling. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 278(1), 1-9. Doi: 10.1111/j.1574-6968.2007.00918.x

Sabino, D.C.C., J.S. Ferreira, S.L. Guimarães, and V.L.D. Baldani. 2012. Bactérias diazotróficas como promotoras do desenvolvimento inicial de plântulas de arroz. Encicl. Biosf. 8(15), 2337-2345.

Santos, P.C., M.S.M. Freitas, S.J. Freitas, M.P.S. Silva, and S.S. Berilli. 2011. Fungos micorrízicos no crescimento e nutrição de rebentos oriundos de coroa de abacaxi. Rev. Bras. Frutic. 33(Num. Spe. 1), 658-665. Doi: 10.1590/S0100-29452011000500092

Schlindwein, G., L.K. Vargas, B.B. Lisboa, A.C. Azambuja, C.E. Granada, N.C. Gabiatti, F. Prates, and R. Stumpf. 2008. Influência da inoculação de rizóbios sobre a germinação e o vigor de plântulas de alface. Ciênc. Rural 38(3), 658-664. Doi: 10.1590/S0103-84782008000300010

Silva, A.A., A.J.C. Carvalho, F.P. Freitas, P.G.O. Pessanha, P.C. Santos, M.P.S. Silva, T.S. Vasconcelos, and F.L. Olivares. 2016. Diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple plantlets during acclimatization. Ciênc. Rural 46(11), 1952-1958. Doi: 10.1590/0103-8478cr20141338

Souza, F.V.D., A.S. Souza, J.A. Santos-Serejo, E.H. Souza, T.G. Junghans, and M.J. Silva. 2009. Micropropagação do abacaxizeiro e outras bromeliáceas. pp. 177-205. In: Junghans, T.G. and A.S. Souza (eds.). Aspectos práticos da micropropagação de plantas. Embrapa Mandioca e Fruticultura Tropical. Cruz das Almas, Brazil.

Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31(4), 425-448. Doi: 10.1111/j.1574-6976.2007.00072.x

Szilagyi-Zecchin, V.J., A.F. Mógor, L. Ruaro, and C. Röder. 2015. Crescimento de mudas de tomateiro (Solanum lycopersicum) estimulado pela bactéria Bacillus amyloliquefaciens subsp. plantarum FZB42 em cultura orgânica. Rev. Ciênc. Agr. 38(1), 26-33.

Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2017. Fisiologia e desenvolvimento vegetal. 6th ed. Artmed, Porto Alegre, Brazil.

Terra, A.B.C., F.R.C. Souza, J.R. Mantovani, A.V. Rezende, and L.A. Florentino. 2019. Physiological characterization of diazotrophic bacteria isolated from Brachiaria brizantha rhizosphere. Rev. Caatinga 32(3), 658-666. Doi: 10.1590/1983-21252019v32n310rc

Downloads

Download data is not yet available.