Skip to main navigation menu Skip to main content Skip to site footer

The phyllosphere microbiome and its potential application in horticultural crops. A review

Phylosphere, host, plant surface.  Photo: S.E. Barrera

Abstract

Microorganisms are essential for life on Earth. They are found in different environments and conditions, such as pH, temperature, pressure, and humidity, etc. In natural and agricultural ecosystems, nutrient cycling and plant protection are important roles played by microorganisms associated with plant species. However, the mechanisms to colonize those environments are not fully understood. This mini-review describes bacterial communities associated with the phyllosphere and an agricultural approach for potential applications. In the context of foodborne illnesses and losses in agricultural production, important issues have arisen because of pathogen attacks. On the other hand, the use of beneficial microorganisms in agriculture is an alternative for improving plant growth, health and production. In this sense, growth promoting bacteria and biocontrol agents isolated from the phyllosphere of several plant species have been less exploited than those from the soil or rhizosphere. However, the treatment of some plant diseases, reduction in pathogen incidence and nitrogen fixation in natural and agricultural systems are successful examples. In the context of food safety, a better understanding of how the indigenous phyllosphere microbiota enable plants to protect themselves against pathogens and to acquire nutrients is expected to prove its importance in the agricultural field. Microbial sources can be managed to reduce the use of chemical products and could be used as an alternative of agronomical applications for improving agroecosystem productivity.

Keywords

Epiphytic community, Plant health and growth, Ecosystem productivity, Biocontrol

PDF

References

Abril, A.B., P.A. Torres, and E.H. Bucher. 2005. The importance of phyllosphere microbial populations in nitrogen cycling in the Chaco semi-arid woodland. J. Trop. Ecol. 21, 103-107. Doi: 10.1017/S0266467404001981

Almethyeb, M., S. Ruppel, H.-M. Paulsen, N. Vassilev, and B. Eichler-Löbermann. 2013. Single and combined applications of arbuscular mycorrhizal fungi and Enterobacter radicincitans affect nutrient uptake of faba bean and soil biological characteristics.  Landbauforschung Volkenrode 3(63), 229-234.

Adesemoye, A.O. and J.W. Kloepper. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85, 1-12. Doi: 10.1007/s00253-009-2196-0

Andreote, F.D., T. Gumiere, and A. Durrer. 2014. Exploring interactions of plant microbiomes. Sci. Agric. 71(6), 528-539. Doi: 10.1590/0103-9016-2014-0195

Arias, R.S., M.A. Sagardoy, and J.W.L. Van Vuurde. 1999. Spatiotemporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J. Basic Microbiol. 39(5-6), 283-292. Doi: 10.1002/(SICI)1521-4028(199912)39:5/6<283::AID-JOBM283>3.0.CO;2-G

Arnold, A.E., L.C. Mejía, D. Kyllo, E.I. Rojas, Z. Maynard, N. Robbins, and E.A. Herre. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 100, 15649-15654. Doi: 10.1073/pnas.2533483100

Atamna-Ismaeel, N., O.M. Finkel, F. Glaser, I. Sharon, R. Schneider, A.F. Post, J.L. Spudich, C. von Mering, J.A. Vorholt, D. Iluz, O. Béjà, and S. Belkin. 2012a. Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ. Microbiol. 14(1), 140-146. Doi: 10.1111/j.1462-2920.2011.02554.x

Atamna-Ismaeel, N., O. Finkel, F. Glaser, C. von Mering, J.A. Vorholt, M. Koblížek, S. Belkin, and O. Béjà. 2012. Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ. Microbiol. Rep. 4(2), 209-216. Doi: 10.1111/j.1758-2229.2011.00323.x

Bai, Z., L. Gu, M. Jing, L. Tang, H. Zhang, and G. Zhuang. 2008a. Pyrethroid insecticide degradation bacteria and method for preparing fungicide thereof. Patent CN101724576. Chine.

Bai, Z., Q. Zhang, J.Yang Q. Zhang, and G. Zhuang. 2008b. Screening method for plant phyllosphere thermophilic bacteria. Patent CN101724581. Chine.

Bai, Z., Q. Zhang, Y. Zhang, X. Pang, and G. Zhuang. 2014. Plant growth promoting bacteria separated from phyllosphere, and production method of bacterial agent of plant growth promoting bacteria. Patent CN105624056. Chine.

Baldoto, L.E.B. and L.F. Olivares. 2008. Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can. J. Microbiol. 54, 918-931. Doi: 10.1139/W08-087

Beattie, G.A. and S.E. Lindow. 1999. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology 89(5), 353-359. Doi: 10.1094/PHYTO.1999.89.5.353

Berlec, A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci. 193-194, 96-102. Doi: 10.1016/j.plantsci.2012.05.010

Berry, D. and S. Widder. 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219. Doi: 10.3389/fmicb.2014.00219

Bhuvaneshwari, K. and P.K. Singh. 2015. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop. 3 Biotech 5(4), 523-529. Doi: 10.1007/s13205-014-0251-8

Bodenhausen, N., M. Bortfeld-Miller, M. Ackermann, and J.A. Vorholt 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283. Doi: 10.1371/journal.pgen.1004283

Bodenhausen, N., M.W. Horton, and J. Bergelson. 2013. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8(2), e56329. Doi: 10.1371/journal.pone.0056329

Bokulich, N.A., J.H. Thorngate, P.M. Richardson, and D.A. Mills. 2014. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 111, 139-148. Doi: 10.1073/pnas.1317377110

Bringel, F. and I. Couée. 2015. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 6, 486. Doi: 10.3389/fmicb.2015.00486

Bulgarelli, D., K. Schlaeppi, S. Spaepen, E.L. Themaat, and P. Schulze-Lefert. 2013. Structure and functions of the bacterial microbiota of plants. Ann. Rev. Plant Biol. 64, 807-838. Doi: 10.1146/annurev-arplant-050312-120106

Carter, M.Q., K. Xue, M.T. Brandl, F. Liu, L. Wu, J.W. Louie, R.E. Mandrell, and J. Zhou. 2012. Functional metagenomics of Escherichia coli O157: H7 interactions with spinach indigenous microorganisms during biofilm formation. PLoS One 7(9), e44186. Doi: 10.1371/journal.pone.0044186

Ceballos, I., S. Mosquera, M. Angulo, J.J. Mira, L.E. Argel, D. Uribe-Velez, M. Romez-Tabarez, S. Orduz-Peralta, and V. Villegas. 2012. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microbial. Ecol. 64, 641-653. Doi: 10.1007/s00248-012-0052-8

Chelle, M. 2005. Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for? New Phytol. 166(3), 781-790. Doi: 10.1111/j.1469-8137.2005.01350.x

Collins, D.P., B.J. Jacobsen, and B. Maxwell. 2003. Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet cercospora leaf spot. Biol. Control 26(3), 224-232. Doi: 10.1016/S1049-9644(02)00146-9

Copeland, J.K., L. Yuan, M. Layeghifard, P.W. Wang, and D.S. Guttman. 2015. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28(3), 274-285. Doi: 10.1094/MPMI-10-14-0331-FI

Cordier, T., C. Robin, X. Capdevielle, M.L. Desprez-Loustau, and C. Vacher. 2012. Spatial variability of phyllosphere fungal assemblages: genetic distance predominates over geographic distance in a European beech stand (Gaguus sylvatica). Fungal Ecol. 5, 509-520. Doi: 10.1016/j.funeco.2011.12.004

Cruz-Martín, M., M. Acosta-Suárez, B. Roque, T. Pichardo, R. Castro, and Y. Alvarado-Capó. 2016. Diversidad de cepas bacterianas de la filosfera de Musa spp. con actividad antifúngica frente a Mycosphaerella fijiensis Morelet. Biotec. Vegetal 16(1), 53-61.

Daza, M., J. Díaz, E. Aguirre, and N. Urrutia. 2015. Efecto de abonos de liberación lenta en la lixiviación de nitratos y nutrición nitrogenada en estevia. Rev. Colomb. Cienc. Hortíc. 9(1), 112-123. Doi: 10.17584/rcch.2015v9i1.3750

Delmotte, N., C. Knief, S. Chaffron, G. Innerebner, B. Roschitzki, R. Schlapbach, C. von Mering, and J.A. Vorholt. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106, 16428-16433. Doi: 10.1073/pnas.0905240106

Dutta, C. and S. Paul. 2012. Microbial lifestyle and genome signatures. Curr. Genom. 13(2), 153-162. Doi: 10.2174/138920212799860698

Feng, Y.J., D.L. Shen, X.Z. Dong, and W. Song. 2003. In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil. 255, 435-444. Doi: 10.1023/A:1026079203474

Fernando, W.G.D., R. Ramarathnam, and T. de Kievit. 2007. Bacterial weapons of fungal destruction: Phyllosphere-targeted biological controlo of plant disease, with emphasis on sclerotinia stem rot and blackleg diseases in canola (Brassica napus L.). pp. 189-199. In: Kubicek, C.P. and I.S. Druzhinina (eds.). Environmental and microbial relationships. The Mycota 4. Springer, Berlin. Doi: 10.1007/978-3-540-71840-6_11

Finkel, O.M., A.Y. Burch, T. Elad, S.M. Huse, S.E. Lindow, A.F. Post, and S. Belkin. 2012. Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert. Appl. Environ. Microbiol. 78(17), 6187-6193. Doi: 10.1128/AEM.00888-12

Finkel, O.M., A.Y. Burch, S.E. Lindow, A.F. Post, and S. Belkin. 2011. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl. Environ. Microbiol. 77(21), 7647-7655. Doi: 10.1128/AEM.05565-11

Finkel, O.M., T.O. Delmont, A.F. Post, and S. Belkin. 2016. Metagenomic signatures of bacterial adaptations to life in the phyllosphere of a salt-secreting desert tree. Appl. Environ. Microbiol. 82(9), 2854-2861. Doi: 10.1128/AEM.00483-16

Friesen, M.L., S.S. Porter, S.C. Stark, E.J. von Wettberg, J.L. Sachs, and E. Martinez-Romero. 2011. Microbially mediated plant functional traits. Ann. Rev. Ecol. Evol. Syst. 42, 23-46. Doi: 10.1146/annurev-ecolsys-102710-145039

Fürnkranz, M., W. Wanek, A. Richter, G. Abell, F. Rasche, and A. Sessitsch. 2008. Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. Isme J. 2, 561-570. Doi: 10.1038/ismej.2008.14

Griffin, E.A. and W.P. Carson. 2015. The ecology and natural history of foliar bacteria focus on tropical forest and agroecosystems. Bot. Rev. 81, 105-149. Doi: 10.1007/s12229-015-9151-9

Gupta, N., S. Vats, and P. Bhargava. 2018. Sustainable agriculture: role of metagenomics and metabolomics in exploring the soil microbiota. pp. 183-199. In: Choudhary, D., M. Kumar, R. Prasad, and V. Kumar (eds). Silico approach for sustainable agriculture. Springer, Singapore. Doi: 10.1007/978-981-13-0347-0_11

Huang, T.-P., D.D.-S. Tzeng, A.C.L. Wong, C.-H. Chen, K.-M. Lu, Y.-H. Lee, W.-D. Huang, B.-F. Hwang, and K.-C. Tzeng. 2012. DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One 7(7), e42124. Doi: 10.1371/journal.pone.0042124

Huang, S.H., J.Y. Zhang, Z. Tao, L. Lei, Y.H. Yu, and L.Q. Huang. 2014. Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere. Plant Physiol. Biochem. 85, 9-13. Doi: 10.1016/j.plaphy.2014.10.006

Hunter, P.J., P. Hand, D. Pink, J.M. Whipps, and G.D. Bending. 2010. Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca Species) phyllosphere. Appl. Environ. Microbiol. 76(24), 8117-8125. Doi: 10.1128/AEM.01321-10

Igiehon, N.O. and O.O. Babalola. 2017. Biofertilizers and sustainable agricultura: exploring arbuscular mycorrhizal fungi. Appl. Microb. Biotech. 101(12), 4871-4881. Doi: 10.1007/s00253-017-8344-z

Innerebner, G., C. Knief, and J.A. Vorholt. 2011. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202-3210. Doi: 10.1128/AEM.00133-11

Jackson, C.R. and W.C. Denney. 2011. Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern magnolia (Magnolia grandiflora). Microb. Ecol. 61, 113-122. Doi: 10.1007/s00248-010-9742-2

Jumpponen, A. and K.L. Jones. 2009. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol. 184(2), 438-448. Doi: j.1469-8137.2009.02990.x

Kembel, S.W., T.K.O. Connor, H.K. Arnold, S.P. Hubbell, and S.J. Wright. 2014. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA 38, 13715-13720. Doi: 10.1073/pnas.1216057111

Kembel, S.W. and R.C. Mueller. 2014. Plant traits and taxonomy drive host associations in tropical phyllosphere fungal communities. Botany 92, 303-311. Doi: 10.1139/cjb-2013-0194

Kim, M., D. Singh, A. Lai-hoe, R. Go, R.A. Rahim, A.N. Ainuddin, J. Chun, and J.M. Adams. 2012. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 63, 674-681. Doi: 10.1007/s00248-011-9953-1

Knief, C., N. Delmotte, S. Chaffron, M. Stark, G. Innerebner, R. Wassmann, C. von Mering, J.A. and Vorholt. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378-1390. Doi: 10.1038/ismej.2011.192

Knief, C., L. Frances, and J.A. Vorholt. 2010. Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1. Microb. Ecol. 60, 440-452. Doi: 10.1007/s00248-010-9725-3

Kumar, B.L. and D.V.R.S. Gopal. 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 5(6), 867-876. Doi: 10.1007/s13205-015-0293-6

Labeda, D.P., K.C. Liu, and L.E. Casida. 1976. Colonization of soil by Arthrobacter and Pseudomonas under varying conditions of water and nutrient availability as studied by plate counts and transmission electron microscopy. Appl. Environ. Microbiol. 31, 551-561. Doi: 10.1128/AEM.31.4.551-561.1976

Laforest-Lapointe, F., C. Messier, and S. Kembel. 2016. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ. 4, e2367. Doi: 10.7717/peerj.2367

Lahlali, R., G. Peng, B.D. Gossen, L. McGregor, F.Q. Yu, R.K. Hynes, S.F. Hwang, M.R. McDonald, and S.M. Boyetchko. 2013. Evidence that the biofungicide serenade (Bacillus subtilis) suppresses clubroot on canola via antibiosis and induced host resistance. Phytopathology 103, 245-254. Doi: 10.1094/PHYTO-06-12-0123-R

Lambais, M.R. S.E. Barrera, E.C. Santos, D.E. Crowley, and A. Jumpponen. 2017. Phyllosphere metaproteomes of trees from the Brazilian atlantic forest show high levels of functional redundancy. Microb. Ecol. 73, 123-134. Doi: 10.1007/s00248-016-0878-6

Lambais, M.R., D.E. Crowley, J.C. Cury, R.C. Bull, and R.R. Rodrigues. 2006. Bacterial diversity in tree canopies of the Atlantic forest. Science 312(5782), 1917. Doi: 10.1126/science.1124696

Lambais, M.R., A.R. Lucheta, and D.E. Crowley. 2014. Bacterial community assemblages associated with the phyllosphere, dermosphere, and rhizosphere of tree species of the atlantic forest are host taxon dependent. Microb. Ecol. 68(3), 567-574. Doi: 10.1007/s00248-014-0433-2

Lemanceau, P., M. Barret, S. Mazurier, S. Mondy, B. Pivato, T. Fort, and C. Vacher. 2017. Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. pp. 101-133. In: Becard, G. (ed.). Advances in botanical research. How plants communicate with their biotic environment. Vol. 82. Academic Press, London. Doi: 10.1016/bs.abr.2016.10.007

Lindow, S.E. and M.T. Brandl. 2003. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875-1883. Doi: 10.1128/AEM.69.4.1875-1883.2003

Luo, Y., L. Zhang, W. Yang, L. Zheng. 2017. Enterobacter sp. 3bh19 for preventing downy mildew by improving phyllosphere micro-ecology of cucumbers and application of enterobacter sp.3bh19. Patent CN106834180. Chine.

McGarvey, J.A., R.M. Hnasko, L.H. Stanker, and L.A. Gorski. 2017. Use of phyllosphere associated lactic acid bacteria as biocontrol agents to reduce bacterial growth on fresh produce. Patent WO2017116856. Washington, DC.

Manching, H.C., P.J. Balint-Kurti, and A.E. Stapleton. 2014. Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Front. Plant Sci. 5, 403. Doi: 10.3389/fpls.2014.00403

Marín, D.H., A.R. Ronald, M. Guzman, and T.B. Sutton. 2003. Black sigatoka: an increasing threat to banana cultivation. Plant Dis. 87, 208-219. Doi: 10.1094/PDIS.2003.87.3.208

Medina, C., D. Cristancho, and D. Uribe. 2009. Respuesta fisiológica y capacidad antagonista de aislamientos filosféricos de levaduras obtenidos en cultivos de mora (Rubus glaucus). Acta Biol. Colomb. 14(3), 181-196.

Melnick, R.L., N.K. Zidack, B.A. Bailey, N.S. Maximova, M. Guiltinan, and P.A. Backman. 2008. Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol. Control 46, 46-56. Doi: 10.1016/j.biocontrol.2008.01.022

Mercier, J. and S.E. Lindow. 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66(1), 369-374. Doi: 10.1128/AEM.66.1.369-374.2000

Morris, C.E. 2002. Phyllosphere. In: eLS. Doi: 10.1038/npg.els.0000400

Müller, T. and S. Ruppel. 2014. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol. Ecol. 87, 2-17. Doi: 10.1111/1574-6941.12198

Müller, D.B., C. Vogel, Y. Bai, and J.A. Vorholt. 2016a. The plant microbiota: systems-level insights and perspectives. Ann. Rev. Genet. 50, 9.1-9.24. Doi: 10.1146/annurev-genet-120215-034952

Müller, D.B., O.T. Schubert, H. Rost, R. Aebersold, and J.A. Vorholt. 2016b. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell. Proteom. 15(10), 3256-3269. Doi: 10.1074/mcp.M116.058164

Mus, F., M.B. Crook, K. Garcia, A. Garcia-Costas, B.A. Geddes, E.D. Kouri, P. Paramasivan, M.-H. Ryu, G.E.D. Oldroyd, P.S. Poole, M.K. Udvardi, C.A. Voigt, J-M. Ané, and J.W. Peters. 2016. Symbiotic nitrogen fixation and the challenges to its extension to non-legumes. Appl. Environ. Microbiol. 82, 3698-3710. Doi: 10.1128/AEM.01055-16

Ottesen, A.R., A. González, J.R. White, J.B. Pettengill, C. Li, S. Allard, S. Rideout, M. Allard, T. Thomas Hill, P. Evans, E. Strain, S. Musser, R. Knight, and E. Brown. 2013. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol. 13, 114. Doi: 10.1186/1471-2180-13-114

Peñuelas, J. and J. Terradas. 2014. The foliar microbiome. Trends Plant Sci. 19(5), 278-280. Doi: 10.1016/j.tplants.2013.12.007

Poudel, R., A. Jumponnen, D.C. Schlatter, T.C. Paulitz, B.B. McSpadden Gardener, L.L. Kinkel, and K.A. Garrett. 2016. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Anal. Theor. Plant pathol. 106, 1083-1096. Doi: 10.1094/PHYTO-02-16-0058-FI

Poveda, I., M. Cruz-Martín, C. Sánchez-García, M. Acosta-Suárez, M. Leiva-Mora, B. Roque, and Y. Alvarado-Capó. 2010. Caracterización de cepas bacterianas aisladas de la filosfera de Musa spp. con actividad antifúngica in vitro frente a Mycosphaerella fijiensis. Biotec. Vegetal 10(1), 57-61.

Prussin II, A.J. and L.C. Marr. 2015. Sources of airborne microorganisms in the built environment. Microbiome 3, 78. Doi: 10.1186/s40168-015-0144-z

Pusey, P.L., V.O. Stockwell, C.L. Reardon, T.H.M. Smits, and B. Duffy. 2011. Antibiosis activity of Pantoea agglomerans biocontrol strain E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101(10), 1234-1241. Doi: 10.1094/PHYTO-09-10-0253

Raaijmakers, J.M., M. Vlami, and J.T. de Souza. 2002. Antibiotic production by bacterial biocontrol agents. Anton. Leeuw. Int. 81, 537-547. Doi: 10.1023/A:1020501420831

Rastogi, G., G.L. Coaker, and J.H. Leveau. 2013. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1-10. Doi: 10.1111/1574-6968.12225

Rastogi, G., A. Sbodio, J.J. Tech, T.V. Suslow, G.L. Coaker, and J.H. Leveau. 2012. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. Isme J. 6, 1812-1822. Doi: 10.1038/ismej.2012.32

Redford, A.J., R.M. Bowers, R. Knight, Y. Linhardt, and N. Fierer. 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885-2893. Doi: 10.1111/j.1462-2920.2010.02258.x

Redford, A.J. and N. Fierer. 2009. Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb. Ecol. 58, 189-198. Doi: 10.1007/s00248-009-9495-y

Remus-Emsermann, M.N. and R.O. Schlechter. 2018. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol. 218(4), 1327-1333. Doi: 10.1111/nph.15054

Remus-Emsermann, M.N.P. and J.A. Vorhold. 2014. Complexities of microbial life on leaf surfaces. Microbe 9(11), 448-452. Doi: 10.1128/microbe.9.448.1

Ren, G., H. Zhang, X. Lin, J. Zhu, and Z. Jia. 2014. Response of phyllosphere bacterial communities to elevated CO2 during rice growing season. Appl. Microbiol. Biotech. 98, 9459-9471. Doi: 10.1007/s00253-014-5915-0

Restrepo, S., M.C. Duque, and V. Verdier. 2000. Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathol. 49, 680-687. Doi: 10.1046/j.1365-3059.2000.00513.x

Rosenberg, E. and I. Zilber-Rosenberg. 2016. Microbes drive evolution of animals and plants: the hologenome concept. mBio 7(2), e01395-15. Doi: 10.1128/mBio.01395-15

Ruíz-Perez, C., S. Restrepo, and M.M. Zambrano. 2016. Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean High-Mountain ecosystem. Appl. Environ. Microbiol. 82(6), 1807-1817. Doi: 10.1128/AEM.02781-15

Ruppel, S., J. Rühlmann, and W. Merbach. 2006. Quantification and localization of bacteria in plant tissues using quantitative real-time PCR and online emission fingerprinting. Plant Soil 286, 21-35. Doi: 10.1007/s11104-006-9023-5

Sa, T.-M., M. Munusamy, W.J. Yim, M.K. Lee, and I.S. Hong. 2012. Novel Methylobacterium sp. microorganism phyllosphaerae cbmb 27 having an effect of promoting plant growth. Patent KR1020100121716. Korea.

Salazar, L.M., L.F. Patiño, and E. Bustamante. 2006. Sustratos foliares para el incremento de bacterias quitinolíticas y glucanolíticas en la filosfera de banano banano. Rev. Fac. Nac. Agron. Medellín 59(2), 3449-3465.

Scheublin, T.R. and J.H. Leveau. 2013. Isolation of Arthrobacter species from the phyllosphere and demonstration of their epiphytic fitness. Microbiol Open. 2, 205-213. Doi: 10.1002/mbo3.59

Schlechter, R.O., M. Miebach, and M.N. Remus-Emsermann. 2019. Driving factors of epiphytic bacterial communities: a mini-review. J. Adv. Res. 19, 57-65. Doi: 10.1016/j.jare.2019.03.003

Suárez, R.J.A. and R. Mehta. 2019. Microbial consortium for agricultural use and formulation containing same. Patent WO2019098817. Mexico.

Toloza, D.L. and L.M. Lizarazo. 2014. Poblaciones microbianas asociadas a la rizósfera y filósfera de plantas de uchuva (Physalis peruviana L.). Rev. Cien. 18(2), 27-38. Doi: 10.25100/rc.v18i2.6092

Turnbull, G.A., M. Ousley, A. Walker, E. Shaw, and J.A.W. Morgan. 2001. Degradation of substituted phenylurea herbicides by Arthrobacter globiformis Strain D47 and Characterization of a plasmid-associated hydrolase gene, puhA. Appl. Environ. Microbiol. 67(5), 2270-2275. Doi: 10.1128/AEM.67.5.2270-2275.2001

Turner, T.R., E.K. James, and P.S. Poole. 2013. The plant microbiome. Genome Biol. 14(6), 209. Doi: 10.1186/gb-2013-14-6-209

Vacher, C., A. Hampe, A.J. Porté, U. Sauer, S. Compant, and C.E. Morris. 2016. The phyllosphere: Microbial jungle at the plant-climate interface. Ann. Rev. Ecol. Evol. Sys. 47, 1-24. Doi: 10.1146/annurev-ecolsys-121415-032238

Villamil, J.E., S.E. Viteri, and W. Villegas. 2015. Aplicación de antagonistas microbianos para el control biológico de Moniliophthora roreri Cif & Par. en Theobroma cacao L. bajo condiciones de campo. Rev. Fac. Nac. Agron. Medellín 68(1), 7441-7450. Doi: 10.15446/rfnam.v68n1.47830

Vogel, C., N. Bodenhausen, W. Gruissem, and J.A. Vorholt. 2016. The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol. 212, 192-207. Doi: 10.1111/nph.14036

Vorholt, J. 2012. Microbial life in the phyllosphere. Nature Rev. Microbiol. 10, 828-840. Doi: 10.1038/nrmicro2910

Wang, X., Y. Xue, M. Han, Y. Bu, and C. Liu. 2014. The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere 108, 258-264. Doi: 10.1016/j.chemosphere.2014.01.050

Wei, F., X. Hu, and X. Xu. 2016. Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sc. Rep. 6, 22611. Doi: 10.1038/srep22611

Whipps, J.M., P. Hand, D. Pink, and G.D. Bending. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105, 1744-1755. Doi: 10.1111/j.1365-2672.2008.03906.x

Williams, T.R., A.L. Moyne, L.J. Harris, and M.L. Marco. 2013. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8(7), e68642. Doi: 10.1371/journal.pone.0068642

Wilson, M. and S.E. Lindow. 1993. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Acta Hortic. 338, 329-330. Doi: 10.17660/ActaHortic.1993.338.51

Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J.H.C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P.K. Groom, J. Gulias, K. Hikosaka, B.B. Lamont, T. Lee, W. Lee, C. Lusk, J.J. Midgley, M.-L. Navas, Ü. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V.I. Pyankov, C. Roumet, S.C. Thomas, M.G. Tjoelker, E.J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. Doi: 10.1038/nature02403

Yadav, R.K.P., K. Karamanoli, and D. Vokou. 2011. Bacterial populations on the phyllosphere of Mediterranean plants: influence of leaf age and leaf surface. Front. Agric. China. 5, 60-63. Doi: 10.1007/s11703-011-1068-4

Zhang, B., Z. Bai, D. Hoefel, L. Tang, Z. Yang, G. Zhuang, J. Yang, and H. Zhang. 2008. Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere. FEMS Microbiol. Lett. 284, 102-108. Doi: 10.1111/j.1574-6968.2008.01178.x

Downloads

Download data is not yet available.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.