Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Capacidad fotosintética, fenología, rendimiento y composición química de semillas de tres cultivares de quinua (Chenopodium quinoa Willd.)

Resumen

La quinua es un grano andino reconocido por su alto valor nutricional y su capacidad para tolerar condiciones ambientales extremas. La mayoría de las publicaciones sobre esta especie se han centrado en aspectos agronómicos o agroindustriales, dejando incertidumbres sobre la relación entre el rendimiento biológico y las características composicionales del grano. Por lo tanto, el objetivo de este estudio fue analizar el rendimiento biológico y las propiedades agroindustriales de las semillas de tres cultivares de quinua ampliamente utilizados en Colombia. Se empleó un diseño completamente al azar con los cultivares Pasankalla, Soracá y Titicaca. La primera fase involucró la evaluación del comportamiento fisiológico de las plantas bajo condiciones controladas. En la segunda fase, se determinaron la producción de semillas y algunas características composicionales en el laboratorio. En general, los tres cultivares mostraron una diversidad significativa y diferencias en rasgos morfológicos, fisiológicos y bioquímicos. El cultivar Titicaca presentó la madurez más temprana, tardando 115,6 días en alcanzar la cosecha, mientras que Soracá fue el cultivar con mayor producción, logrando 321 g de semillas por planta. En cuanto a las características del grano, los cultivares Soracá y Pasankalla tuvieron el mayor contenido de proteína, con valores de 14,33 y 13,76%, respectivamente.

Palabras clave

Clorofila, Crecimiento vegetal, Proteína de semilla, Conductancia estomática, Almidón

XML (English) PDF (English)

Citas

  1. Amjad, M., S.S. Akhtar, A. Yang, J. Akhtar, and S.-E. Jacobsen. 2015. Antioxidative response of quinoa exposed to iso-osmotic, ionic and non-ionic salt stress. J. Agron. Crop Sci. 201(6), 452-460. Doi: https://doi.org/10.1111/jac.12140
  2. Angeli, V., P.M. Silva, D.S. Massuela, M.W. Khan, A. Hamar, F. Khajehei, S. Graeff-Hänninger, and C. Piatti. 2020. Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 9(2), 216. Doi: https://doi.org/10.3390/foods9020216
  3. Baker, M.J. J. Trevisan, P. Bassan, R. Bhargava, H.J. Butler, K.M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, and F.L. Martin. 2014. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771-1791. Doi: https://doi.org/10.1038/nprot.2014.110
  4. Bazile, D., S.-E. Jacobsen, and A. Verniau. 2016. The global expansion of quinoa: trends and limits. Front. Plant Sci. 7, 622. Doi: https://doi.org/10.3389/fpls.2016.00622
  5. Cruces, L., E. de la Peña, and P. de Clercq. 2024. Advances in the integrated pest management of quinoa (Chenopodium quinoa Willd.): a global perspective. Insects 15(7), 540. Doi: https://doi.org/10.3390/insects15070540
  6. Czekus, B., I. Pećinar, I. Petrović, N. Paunović, S. Savić, Z. Jovanović, and R. Stikić. 2019. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca cvs. of quinoa seed microstructure and perisperm characterization. J. Cereal Sci. 87, 25-30. Doi: https://doi.org/10.1016/j.jcs.2019.02.011
  7. Delgado, A.I., J.H. Palacios, and C. Betancourt. 2009. Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño (Colombia). Agron. Colomb. 27(2), 159-167.
  8. Doria, J. 2010. Generalidades sobre las semillas: su producción, conservación y almacenamiento. Cult. Trop. 31(1), 74-85.
  9. Eustis, A., K.M. Murphy, and F.H. Barrios-Masias. 2020. Leaf gas exchange performance of ten quinoa genotypes under a simulated heat wave. Plants 9(1), 81. Doi: https://doi.org/10.3390/plants9010081
  10. El-Harty, E.H., A. Ghazy, T.K. Alateeq, S.A. Al-Faifi, M.A. Khan, M. Afzal, S.S. Alghamdi, and H.M. Migdadi. 2021. Morphological and molecular characterization of quinoa genotypes. Agriculture 11(4), 286. Doi: https://doi.org/10.3390/agriculture11040286
  11. García-Parra, M., J. García-Molano, and Y. Deaquiz-Oyola. 2019b. Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agron. Colomb. 37(3), 160-168. Doi: https://doi.org/10.15446/agron.colomb.v37n2.76219
  12. García-Parra, M., J.F. García-Molano, and C.A. Quito. 2019a. Efecto de la salinidad por NaCl en el crecimiento y desarrollo de plantas de Chenopodium quinoa Willd. Cienc. Desarro. 10(1), 19-29. Doi: https://doi.org/10.19053/01217488.v10.n1.2019.8341
  13. García-Parra, M., D. Roa-Acosta, and J.E. Bravo-Gómez. 2022. Effect of the altitude gradient on the physiological performance of quinoa in the Central region of Colombia. Agronomy 12(9), 2112. Doi: https://doi.org/10.3390/agronomy12092112
  14. García-Parra, M., R. Stechauner-Rohringer, J.F. Garcia-Molano, and D. Ortiz-Gonzalez. 2020c. Analysis of the growth and morpho-physiological performance of three cultivars of Colombian quinoa grown under a greenhouse. Rev. Ciênc. Agrovet. 19(1), 73-83. Doi: https://doi.org/10.5965/223811711912020073
  15. García-Parra, M., R. Stechauner-Rohringer, D. Roa-Acosta, D. Ortiz-González, J. Ramirez-Correa, N. Plazas-Leguizamón, and A. Colmenares-Cruz. 2020b. Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd. Not. Bot. Horti. Agrobo. 48(4), 1742-1755. Doi: https://doi.org/10.15835/nbha48412059
  16. García-Parra, M., A. Zurita-Silva, R. Stechauner-Rohringer, D. Roa-Acosta, and S.-E. Jacobsen. 2020a. Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chil. J. Agric. Res. 80(2), 290-302. Doi: https://doi.org/10.4067/S0718-58392020000200290
  17. Gómez, L. and E. Aguilar. 2016. Guía de cultivo de la quinua. FAO, Lima.
  18. Gonzalez, J.A., Y. Konishi, M. Bruno, M. Valoy, and F.E. Prado. 2012. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. J. Sci. Food Agric. 92(6), 1222-1229. Doi: https://doi.org/10.1002/jsfa.4686
  19. Guerrero, A. 2018. Impacto del cultivo de la quinua (Chenopodium quinoa Willd) como alternativa productiva y socioeconómica en la comunidad indígena Yanacona de La Vega, Cauca, Colombia. PhD thesis. Universidad Nacional de Colombia, Palmira, Colombia.
  20. Hernández-Ledesma, B. 2019. Quinoa (Chenopodium quinoa Willd.) as source of bioactive compounds: a review. Bioact. Compd. Health Dis. 2(3), 1-27. Doi: https://doi.org/10.31989/bchd.v2i3.556
  21. Hinojosa, L., J.A. González, F.H. Barrios-Masias, F. Fuentes, and K.M. Murphy. 2018. Quinoa abiotic stress responses: a review. Plants 7(4), 106. Doi: https://doi.org/10.3390/plants7040106
  22. Hinojosa, L., J.B. Matanguihan, and K.M. Murphy. 2019. Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 205, 33-45. Doi: https://doi.org/10.1111/jac.12302
  23. Infante, H., S. Albesiano, L. Arrieta, and N. Gómez. 2018. Morphological characterization of varieties Chenopodium quinoa cultivated in the department of Boyacá, Colombia. Rev. U.D.C.A Act. Div. Cient. 21(2), 329-339. Doi: https://doi.org/10.31910/rudca.v21.n2.2018.977
  24. Issa Ali, O., R. Fghire, F. Anaya, O. Benlhabib, and S. Wahbi. 2019. Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71, 123-133. Doi: https://doi.org/10.1007/s10343-019-00460-y
  25. Jacobsen, S.-E., A. Mujica, and C.R. Jensen. 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19(1-2), 99-109. Doi: https://doi.org/10.1081/FRI-120018872
  26. Jiménez-Suancha, S.C., O.H. Alvarado, and E.H. Balaguera-López. 2015. Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Rev. Colomb. Cienc. Hortic. 9(1), 149-160. Doi: https://doi.org/10.17584/rcch.2015v9i1.3753
  27. Madrid, D., E. Salgado, G. Verdugo, P. Olguín, D. Bilalis, and F. Fuentes. 2018. Morphological traits defining breeding criteria for coastal quinoa in Chile. Not. Bot. Horti. Agrobo. 46(1), 190-196. Doi: https://doi.org/10.15835/nbha46110788
  28. Mamedi, A., R. Tavakkol, and M. Oveisi. 2017. Cardinal temperatures for seed germination of three quinoa (Chenopodium quinoa Willd.) cultivars. Iran. J. Field. Crop Sci. 2017, 89-100.
  29. Manjarres-Hernández, E.H., D.M. Arias-Moreno, A.C. Morrillo-Coronado, Z.Z. Ojeda-Pérez, and A. Cárdenas-Chaparro. 2021a. Phenotypic characterization of quinoa (Chenopodium quinoa Willd.) for the selection of promising materials for breeding programs. Plants 10(7), 1339. Doi: https://doi.org/10.3390/plants10071339
  30. Manjarres-Hernández, E.H., A.C. Morillo-Coronado, Z.Z. Ojeda-Perez, A. Cárdenas-Chaparro, and D.M. Arias-Moreno. 2021b. Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica 217(1), 101. Doi: https://doi.org/10.1007/s10681-021-02837-5
  31. Melo, D.I. 2016. Studio di adattabilità colturale della quinoa (Chenopodium quinoa Willd.) in Italia settentrionale. PhD thesis. Università Cattolica del Sacro Cuore di Piacenza, Italia settentrionale. PhD thesis. Università Cattolica del Sacro Cuore, Piacenza, Italy.
  32. Morillo-Coronado, A., M. Castro-Roberto, and Y. Morillo-Coronado. 2017. Caracterización de la diversidad genética de una colección de quinua (Chenopodium quinoa Willd). Rev. Biotecnol. Sector Agropecu. Agroind. 15(2), 49-56. Doi: https://doi.org/10.18684/BSAA(15)49-56
  33. Morillo-Coronado, A.C., E.H. Manjarres-Hernández, and Y. Morillo-Coronado. 2020. Evaluación morfoagronómica de 19 materiales de Chenopodium quinoa en el departamento de Boyacá. Biotecnol. Sector Agropecu. Agroind. 18(1), 84-96. Doi: https://doi.org/10.18684/bsaa.v18n1.1416
  34. Ortiz-Gómez, V., J.E. Nieto-Calvache, D.F. Roa-Acosta, J.F. Solanilla-Duque, and J.E. Bravo-Gómez. 2022. Preliminary characterization of structural and rheological behavior of the quinoa hyperprotein-defatted flour. Front. Sustain. Food Syst. 6, 852332. Doi: https://doi.org/10.3389/fsufs.2022.852332
  35. Polo-Muñoz, M.P., M.Á.Garcia-Parra, and D.F. Roa-Acosta. 2023. Viscoelastic behavior of gels obtained from five cultivars of quinoa at altitude gradient. Front. Sustain. Food Syst. 7, 1222277. Doi: https://doi.org/10.3389/fsufs.2023.1222277
  36. Ramzani, P.M.A. L. Shan, S. Anjum, W.-ud-D. Khan, H. Ronggui, M. Iqbal, Z.A. Virk, and S. Kausar. 2017. Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiol. Biochem. 116, 127-138. Doi: https://doi.org/10.1016/j.plaphy.2017.05.003
  37. Reguera, M., C.M. Conesa, A. Gil-Gómez, C.M. Haros, M.Á. Pérez-Casas, V. Briones-Labarca, L. Bolaños, I. Bonilla, R. Álvarez, K. Pinto, Á. Mujica, and L. Bascuñán-Godoy. 2018. The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ 6, e4442. Doi: https://doi.org/10.7717/peerj.4442
  38. Roa, D.F., P.R. Santagapita, M.P. Buera, and M.P. Tolaba. 2014. Amaranth milling strategies and fraction characterization by FT-IR. Food Bioprocess. Technol. 7(1), 711-718. Doi: https://doi.org/10.1007/s11947-013-1050-7
  39. Roa-Acosta, D.F., J.E. Bravo-Gómez, M.A. García-Parra, R. Rodríguez-Herrera, and J.F. Solanilla-Duque. 2020. Hyper-protein quinoa flour (Chenopodium quinoa Wild): monitoring and study of structural and rheological properties. Lwt 121, 108952. Doi: https://doi.org/10.1016/j.lwt.2019.108952
  40. Rodríguez-Sandoval, E., A. Lascano, and G. Sandoval. 2012. Influencia de la sustitución parcial de la harina de trigo por harina de quinua y papa en las propiedades termomecánicas y de panificación de masas. Rev. U.D.C.A Act. Div. Cient. 15(1), 199-207. Doi: https://doi.org/10.31910/rudca.v15.n1.2012.817
  41. Shabala, S., Y. Hariadi, and S.-E. Jacobsen. 2013. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. J. Plant Physiol. 170(1), 906-914. Doi: https://doi.org/10.1016/j.jplph.2013.01.014
  42. Sosa-Zuniga, V., V. Brito, F. Fuentes, and U. Steinfort. 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 171(1), 117-124. Doi: https://doi.org/10.1111/aab.12358
  43. Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates, Sunderland, MA.
  44. Varma, A. and A. Jain. 2021. Taxonomy, morphology, and life cycle of quinoa. pp. 17-33. In: Varma, A. (ed.). Biology and biotechnology of quinoa. Springer, Singapore. Doi: https://doi.org/10.1007/978-981-16-3832-9_2
  45. Veloza, C., G. Romero-Guerrero, and J.J. Gómez-Piedras. 2016. Respuesta morfoagronómica y calidad en proteína de tres accesiones de quinua (Chenopodium quinoa Willd.) en la sabana norte de Bogotá. Rev. U.D.C.A Act. Div. Cient. 19(2), 325-332. Doi: https://doi.org/10.31910/rudca.v19.n2.2016.86
  46. Yuan, Z., Q. Cao, K. Zhang, S.T. Ata-Ul-Karim, Y. Tian, Y. Zhu, W. Cao, and X. Liu. 2016. Optimal leaf positions for SPAD meter measurement in rice. Front. Plant Sci. 7, 719. Doi: https://doi.org/10.3389/fpls.2016.00719

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 > >> 

También puede {advancedSearchLink} para este artículo.