Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evolución microestrutural durante austemperado de una fundición blanca al alto cromo ASTM A-532, Clase III, Tipo A, sometida a desgaste abrasivo

Resumen

Este trabajo estudia la influencia de variables tales como tiempo y temperatura de sostenimiento durante el austemperado de una fundición blanca al alto cromo con la siguiente composición: Cr, 25 %; C, 3 %; Si, 0.47 %; Mn, 0.74 %, y Mo, 1.02 %. El objetivo del austemperado fue modificar el porcentaje de austenita retenida, y correlacionarlo con la resistencia al desgaste abrasivo bajo diferentes condiciones; los ensayos fueron realizados según los lineamientos de la norma ASTM G65. Las técnicas de microdureza MEB-EDS y DRX fueron realizadas para determinar las propiedades mecánicas, composición química, tipo de carburos y microestructuras presentes, respectivamente. Los resultados mostraron que la mejor resistencia a la abrasión fue alcanzada a una temperatura de austemperado de 450 ºC y a 6 horas de permanencia.

Palabras clave

Austemperado, Austenita retenida, Desgaste abrasivo, Fundiciones al alto cromo, Carburos de cromo

PDF (English) XML (English)

Citas

  1. M. Col, F. GülKoc, H. Öktem, and D. Kir, “The role of boron content in high alloy white cast iron (Ni-Hard 4) on microstructure, mechanical properties and wear resistance,” Wear, vol. 348-349, pp 158-165, Feb. 2016. DOI: http://doi.org/10.1016/j.wear.2015.12.007. DOI: https://doi.org/10.1016/j.wear.2015.12.007
  2. K. Kusumoto, K. Shimizu, X. yaer, Y. Zhang, Y. Ota, and J. Ito, “Abrasive wear characteristics of Fe-2C-5Cr-5Mo-5W-5Nb multicomponent white cast iron,” Wear, vol. 376-377, pp 22-29, Apr. 2017. DOI: http://doi.org/10.1016/j.wear.2017.01.096. DOI: https://doi.org/10.1016/j.wear.2017.01.096
  3. K. D. Tozetti, E. Albertin, and C. Scandian, “Abrasive size and load effects on the wear of a 19.9 % chromium and 2.9 % carbon cast iron,” Wear, vol. 376-377, pp 46-53, Apr. 2017. DOI: http://doi.org/10.1016/j.wear.2017.02.008. DOI: https://doi.org/10.1016/j.wear.2017.02.008
  4. V. Heino, M. Kallio, K. Valtonen, and V. T. Kuokkala, “The role of microstructure in high stress abrasion of white cast irons,” Wear, In press. Mayo 2017. DOI: http://doi.org/10.1016/j.wear.2017.04.029. DOI: https://doi.org/10.1016/j.wear.2017.04.029
  5. American Society for Testing and Metals. Standard Specification for Abrasion Resistant Cast Irons: ASTM G-532,
  6. J. P. Holman, Transferencia de calor, 8 Ed. McGraw Hill, 1998.
  7. ASM Handbook, Vol. 1, Properties and Selection: Irons, Steels, and High-Performance Alloys, 1993.
  8. ASM Handbook, vol. 18, Friction, Lubrication, and Wear Technology, 1992.
  9. American Society for Testing and Metals. Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus: ASTM G-65.
  10. S. D. Carpenter, and D. Carpenter, “X-ray diffraction study of M7C3 carbide within a high chromium white iron,” Materials Letters, vol. 57 (28), pp. 4456-4459, Oct. 2003. DOI: http://doi.org/10.1016/S0167-577X(03)00342-2. DOI: https://doi.org/10.1016/S0167-577X(03)00342-2
  11. C. Fan, M. C. Chen, C.M. Chang, and W. Wu, “Microstructure change caused by (Cr, Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys,” Surf. Coat. Technology, vol. 201 (3-4), pp. 908-912, Oct. 2006. DOI: http://doi.org/10.1016/j.surfcoat.2006.01.010. DOI: https://doi.org/10.1016/j.surfcoat.2006.01.010
  12. Ö. N. Doğan, J. A. Hawk, and G. LairdII, “Solidification Structure and Abrasion Resistance of High Chromium White Irons,” Metall. Mater. Trans. A., vol. 28A, pp 1315-1328, Jun. 1997. DOI: http://doi.org/10.1007/s11661-997-0267-3. DOI: https://doi.org/10.1007/s11661-997-0267-3
  13. A. E. Karantzalis, A. Lekatou, and E. Diavat, “Effect of Destabilization. Heat Treatments on the Microstructure of High-Chromium Cast Iron: A Microscopy Examination Approach,” J. Mater. Eng. Perform., vol 18 (8), pp 1078-1085, Nov. 2009. DOI: http://doi.org/10.1007/s11665-009-9353-6. DOI: https://doi.org/10.1007/s11665-009-9353-6
  14. S. K. Hann, and J. D.Gates, “A transformation toughening white cast iron,” J. Mater. Sci., vol. 32 (5), pp. 1249-1259, Mar. 1997. DOI: http://doi.org/10.1023/A:1018544204267. DOI: https://doi.org/10.1023/A:1018544204267
  15. D. Li, L. Liu, Y. Zhang, Ch. Ye, X. Ren, Y. Yang, and Q. Yang, “Phase diagram calculation of high chromium cast irons and influence of its chemical composition,” Materials and Design., vol. 30 (2), pp. 340-345, Feb. 2009. DOI: http://doi.org/10.1016/j.matdes.2008.04.061. DOI: https://doi.org/10.1016/j.matdes.2008.04.061
  16. A. Bedolla-Jacuide, L. Arias, and B. Hernández, “Kinetics of Secondary Carbides Precipitation in a High-Chromium White Iron,” J. Mater. Eng. Perform, vol. 12 (4), pp. 371-382, Aug. 2003. DOI: http://doi.org/10.1361/105994903770342881. DOI: https://doi.org/10.1361/105994903770342881
  17. A. E. Karantzalis, A. Lekatou, and H. Mavros, “Microstructural Modifications of As-Cast High-Chromium White Iron by Heat Treatment,” J. Mater. Eng. Perform., vol. 18 (2), pp. 174-181, Mar. 2009. DOI: http://doi.org/10.1007/s11665-008-9285-6. DOI: https://doi.org/10.1007/s11665-008-9285-6
  18. A. Akhbarizadeh, A. Shafyei, and M.A. Golozar, “Effects of cryogenic treatment on wear behavior of D6 tool steel,” Materials and Design, vol. 30 (8), pp. 3259-3264, Sep. 2009. DOI: http://doi.org/10.1016/j.matdes.2008.11.016. DOI: https://doi.org/10.1016/j.matdes.2008.11.016
  19. Y. P. Wang, D. Y. Li, L. Parent, and H. Tian, “Performances of hybrid high-entropy high-Cr cast irons during sliding wear and air-jet solid-particle erosion,” Wear 301, pp. 390-397, 2013. DOI: http://doi.org/10.1016/j.wear.2012.12.045. DOI: https://doi.org/10.1016/j.wear.2012.12.045
  20. R. Blickensderfer, J.H. Tylczak. and G. Laird II, “Spalling of high chromium white cast in balls subjected to repetitive impact,” Wear of Metals, vol. 1, pp. 175-183, Jan. 1989.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.