Skip to main navigation menu Skip to main content Skip to site footer

Environmental Sustainability in South America

Abstract

The purpose of this article is to determine the similarities in the context of environmental practices and sustainability of twelve South American countries and compares the environmental sustainability performance with six principal components. A multivariate analysis as a hierarchical method was carried out with 12 countries of South American with seventeen sustainable environmental indicators, secondary official data sources were consulted, namely the databases of ECLAC (Economic Commission for Latin America and the Caribbean), applying eigenvector and eigenvalues from the correlation matrix and Ward's method with squared Euclidean distances.

The results suggest that the initial jumps in terms of distance are small. accordingly, the twelve countries analysed in study are grouped into five clusters. Deepening then in the perspective of characteristics of each cluster, CL1: Colombia, Venezuela, Suriname, Argentina and Bolivia; CL2: Guyana, Paraguay, Uruguay and Peru; CL3: Brazil; CL4: Ecuador; CL5: Chile. The research highlights significant differences among these South American countries, clustering those presenting similar patterns of behaviour and identifying the best performers. We argue that biodiversity must be protected and encouraged, and awareness raised of the importance of environmental sustainability and support the impact of climate change. Argentina, Uruguay and Chile face severe scarcity water issues and temperatures have risen in every country, but especially in Brazil, Colombia, Ecuador, Paraguay, Suriname, Venezuela.

 

Keywords

Environmental sustainability, South America, Multivariate analysis, Sustainable environmental indicators

PDF Video (Español)

Author Biography

Paola Hermosa Del Vasto

PhD in Economic and Business Sciences from the Complutense University of Madrid. She is currently an Assistant Professor in the Department of Business Organization I at the University of Granada. She has taught Master's degrees nationwide. She has published in several national journals and has participated in International Conferences. Since 2020, she has been part of a national interuniversity research group, Research in Accounting and Economics for Sustainable Development in Emerging Economies (READEES) and since 2023 in the Advanced Research in Business Management group (SEJ478).

Rui Cunha Marques

Graduated, Post-graduated, MSc, PhD, and Postdoc (habilitation), he is a Full Professor of Systems Engineering in the Department of Industrial Engineering and Management at Lusófona University, Portugal. He is a researcher at the Research Centre for Asset Management and Systems Engineering (RCM2+), the Public Utility Research Center (PURC) at the University of Florida, and the Center of Local Government (CLG) at the University of New England, Australia, where he is a Visiting Professor. His expertise includes public service regulation, performance assessment, project management, and public-private partnerships. He has authored over 700 publications, including 14 books, and produced more than 500 technical reports. Currently, he consults for the World Bank and the Asian Development Bank and has collaborated with various international organizations and entities in over 50 countries across five continents.

 

 

Scopus ID: 15837022600

Google Scholar: Rui Cunha Marques

ResearchGate: Rui Cunha Marques

 

Juan Luis Peñaloza

Juan Luis Peñaloza is currently working as an Associate Professor in the Department of Statistics and Operations Research II (Decision Methods) at the Complutense University of Madrid. His current project is "Big Data, Demand and Supply of Justice, Judicial Services." His research disciplines include Experimental Economics, Environmental Economics, and Behavioural Economics. He possesses expertise and experience in Game Theory, Decision Theory, Economic Analysis, and Applied Econometrics. Peñaloza’s work focuses on understanding complex decision-making processes and their applications in various economic contexts, contributing to advancements in both theoretical and applied economics.

 

Orcid ID: https://orcid.org/0000-0001-9109-7247

Google Scholar: Juan Luis Peñaloza

ResearchGate: Juan Luis Peñaloza

 


References

  1. Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering–A decade review. Information Systems, 53, 16–38. https://doi.org/10.1016/j.is.2015.04.007 DOI: https://doi.org/10.1016/j.is.2015.04.007
  2. Alcaraz-Quiles, F., Navarro-Galera, A., & Ortiz-Rodríguez, D. (2014). A comparative analysis of transparency in sustainability reporting by local and regional governments. Lex Localis, Journal of Local Self-Government, 12(1), 55–78. DOI: https://doi.org/10.4335/12.1.55-78(2014) DOI: https://doi.org/10.4335/12.1.55-78(2014)
  3. Ammons, D. N., Coe, C., & Lombardo, M. (2001). Performance-Comparison Projects in Local Government: Participants’ Perspectives. Public Administration Review, 61(1), 100–110. doi:http://www.jstor.org/stable/977540 DOI: https://doi.org/10.1111/0033-3352.00009
  4. Ammons, D. N., & Roenigk, D. J. (2015). Benchmarking and interorganizational learning in local government. Journal of Public Administration Research and Theory, 25(1), 309-335. doi:10.1093/jopart/muu014 DOI: https://doi.org/10.1093/jopart/muu014
  5. Boasson, E. L., & Wettestad, J. (2016). EU climate policy: Industry, policy interaction and external environment. Routledge.
  6. CEPALSTAT. 2022. Bases de datos y publicaciones estadísticas. Retrieved from https://statistics.cepal.org/portal/cepalstat/index.html?lang=es
  7. Clean Air Institute, 2013. Air Quality in Latin American: An Overview. Washington DC. Available in. https://www.semanticscholar.org/paper/Air-Quality-in-Latin-America-%3A-An-Overview-Green/6a995e3798617e8496bbe02be96e21e7228cb86b.Accessed on March/2021.
  8. Crabb, A., & Leroy, P. (2008). The handbook of environmental policy evaluation. London, UK. Routledge. https://doi.org/10.4324/9781849773072 DOI: https://doi.org/10.4324/9781849773072
  9. Da Cruz, N. F., & Marques, R. C. (2014). Da. Cities, 39, 165-170. doi:10.1016/j.cities.2014.01.001 DOI: https://doi.org/10.1016/j.cities.2014.01.001
  10. Darré, E., Cadenazzi, M., Mazzilli, S., Rosas, J., & Picasso, V. (2019). Environmental impacts on water resources from summer crops in rainfed and irrigated systems. Journal of Environmental Management, 514-522. doi: https://doi.org/10.1016/j.jenvman.2018.11.090 DOI: https://doi.org/10.1016/j.jenvman.2018.11.090
  11. Del Campo, C., Hermosa del Vasto, P., Urquía-Grande, E., & Jorge, S. (2021). Country performance in the South American region: A multivariate analysis. International Journal of Public Administration, 44(5), 390-408. doi:10.1080/01900692.2020.1728314 DOI: https://doi.org/10.1080/01900692.2020.1728314
  12. Environmental Performance Index EPI, (2022). 2022 EPI results. Retrieved from https://epi.yale.edu/epi-results/2022/component/epi
  13. Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Chichester, UK: John Wiley & Sons, Ltd. DOI: https://doi.org/10.1002/9780470977811
  14. Francisco, M., & Linnér, B. (2023). AI and the governance of sustainable development. an idea analysis of the European Union, the United Nations, and the World Economic Forum. Environmental Science & Policy, 150, 103590. doi:10.1016/j.envsci.2023.103590 DOI: https://doi.org/10.1016/j.envsci.2023.103590
  15. Gallego-Álvarez, I., García-Rubio, R., & Martínez-Ferrero. (2018). Environmental performance concerns in Latin America: Determinant factors and multivariate analysis. Spanish Accounting Review, 21(2), 206-221. doi: 10.1016/j.rcsar.2018.05.003 DOI: https://doi.org/10.1016/j.rcsar.2018.05.003
  16. Glave, M., & Escobal, J. (1995). Indicadores de sostenibilidad para la agricultura andina*. Debate Agrario, (23), 89-112,156. Retrieved from https://www.proquest.com/scholarly-journals/indicadores-de-sostenibilidad-para-la-agricultura/docview/217872634/se-2?accountid=14542
  17. Glave (2022). Full set of GRI standards. doi: https://www.globalreporting.org/how-to-use-the-gri-standards/gri-standards-english-language/
  18. Global Reporting Initiative. GRI (2022). Full set of GRI standards. doi: https://www.globalreporting.org/how-to-use-the-gri-standards/gri-standards-english-language/
  19. Global Water Partnership. GWP (2022). Annual report of the Global Water Partnership. Retrieved from https://www.gwp.org/en/About/more/Events-and-Calls/2022/
  20. Goodland, R. (1995). The concept of environmental sustainability. Annual Review Ecology and Systematics, 26(1), 1-24. doi: https://doi.org/10.1146/annurev.es.26.110195.000245 DOI: https://doi.org/10.1146/annurev.ecolsys.26.1.1
  21. Gómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science & Policy, 114, 422-435. doi:10.1016/j.envsci.2020.09.009 DOI: https://doi.org/10.1016/j.envsci.2020.09.009
  22. Hair, J., Black, W., Babin, B., & Anderson, R. (2009). Multivariate data analysis (7th ed.). Upper Saddle River, NJ: Pearson.
  23. Herman, K. S., & Shenk, J. (2021). Pattern discovery for climate and environmental policy indicators. Environmental Science & Policy, 120, 89-98. doi:10.1016/j.envsci.2021.02.003 DOI: https://doi.org/10.1016/j.envsci.2021.02.003
  24. Hermosa, P., Jorge, S., Urquía-Grande, E., & Campo, C. D. (2024). Measuring governments' online accountability. Electronic Government, an International Journal, 20(1), 109-138.doi: https://doi.org/10.1504/EG.2024.135314 DOI: https://doi.org/10.1504/EG.2024.135314
  25. Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441. https://doi.org/10.1037/h0071325 DOI: https://doi.org/10.1037/h0071325
  26. Hotelling, H. (1936). Simplified calculation of principal components. Psychometrika 1, 27–35. https://doi.org/10.1007/BF02287921 DOI: https://doi.org/10.1007/BF02287921
  27. Kaufman, L., & Rousseeuw, P. (2009). Finding groups in data: An introduction to cluster analysis. New York, NY: John Wiley & Sons
  28. Kiehbadroudinezhad, M., Merabet, A., Al-Durra, A., Hosseinzadeh-Bandbafha, H., Wright, M. M., & El-Saadany, E. (2024). Towards a sustainable environment and carbon neutrality: Optimal sizing of standalone, green, reliable, and affordable water-power cogeneration systems. Science of the Total Environment, 912, 168668. doi:10.1016/j.scitotenv.2023.168668 DOI: https://doi.org/10.1016/j.scitotenv.2023.168668
  29. Klumpp, A., Domingos, M., & Pignata, M. L. (2023). Air pollution and vegetation damage in South America—state of knowledge and perspectives. Environmental pollution and plant responses, 111-136. DOI:10.1201/9780203756935-7 DOI: https://doi.org/10.1201/9780203756935-7
  30. Ma, W., Wu, T., Stan, S., & Gao, B. (2024). Ensuring environment sustainability through natural resources, renewable energy consumption, and inflation dynamics. Resources Policy, 90, 104676. doi:10.1016/j.resourpol.2024.104676 DOI: https://doi.org/10.1016/j.resourpol.2024.104676
  31. Martínez Rodrigo (ed.), Institutional frameworks for social policy in Latin America and the Caribbean, ECLAC Books, No. 146 (LC/PUB.2017/14-P/Rev.1), Santiago, Economic Commission for Latin America and the Caribbean (ECLAC), 2019. DOI: https://doi.org/10.18356/8ec1b578-en
  32. Miranda, A., Lara, A., Altamirano, A., Di Bella, C., Mauro, E., & Camarero, J. (2020). Forest browning trends in response to drought in a highly threatened Mediterranean landscape of South America. Ecological Indicators, 115, 1-10. doi:https://doi.org/10.1016/j.ecolind.2020.106401 DOI: https://doi.org/10.1016/j.ecolind.2020.106401
  33. Mitchell, B. (2013). Managing for environmental justice. Resource and Environmental Management (pp. 369-387). London: Routledge. doi: https://doi.org/10.4324/9781315847771 DOI: https://doi.org/10.4324/9781315847771
  34. OECD. Organisation for Economic Co-operation and Development (2022). Environmental indicators. Retrieved from https://www.oecd.org/site/envind/
  35. OECD. Organisation for Economic Co-operation and Development (2023). OECD key indicators. Retrieved from https://www.compareyourcountry.org/key-indicators
  36. Olafsson, S., Cook, D., Davidsdottir, B., & Johannsdottir, L. (2014). Measuring countries׳ environmental sustainability performance – A review and case study of Iceland. Renewable and Sustainable Energy Reviews, 39, 934-948. doi:10.1016/j.rser.2014.07.101 DOI: https://doi.org/10.1016/j.rser.2014.07.101
  37. Paredes-Beltran, B., Sordo-Ward, A., de Lama, B., & Garrote, L. (2021). A continent assessment of reservoir storage and water availability in South America. Water, 13(14) doi:https://doi.org/10.3390/w13141992 DOI: https://doi.org/10.3390/w13141992
  38. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720 DOI: https://doi.org/10.1080/14786440109462720
  39. Ponomarenko, T.; Reshneva, E.; Mosquera Urbano, A.P. (2022). Assessment of Energy Sustainability Issues in the Andean Community: Additional Indicators and Their Interpretation. Energies, 15, 1077. DOI: https://doi.org/10.3390/en15031077 DOI: https://doi.org/10.3390/en15031077
  40. Porter, M. (1991). America's green strategy. Scientific American 264, No. 4. DOI: https://doi.org/10.1038/scientificamerican0491-168
  41. Rutherford, B. (2000). Construction and presentation of performance indicators in executive agency external reports. Financial Accountability & Management, 16(3), 225–249. doi:10.1111/1468-0408.00106 DOI: https://doi.org/10.1111/1468-0408.00106
  42. Shahzad, M., Qu, Y., Javed, S. A., Zafar, A. U., & Rehman, S. U. (2020). Relation of environment sustainability to CSR and green innovation: A case of Pakistani manufacturing industry. Journal of Cleaner Production, 253, 119938. doi:10.1016/j.jclepro.2019.119938 DOI: https://doi.org/10.1016/j.jclepro.2019.119938
  43. Shiklomanov, I. (1998). World's water resources. A new appraisal and assessment for the 21st century. Paris: UNESCO (United Nations Educational Scientific and Cultural Organization).
  44. System for estimating greenhouse gas emissions (SEEG) 2021. Brazilian Civil Society Initiative the Climate Observatory – SEEG’s municipality data. Retrieved from https://www.cdp.net/en/cities/ghg-emissions-tools-and-datasets-guide-for-cities/seeg
  45. Sepúlveda, S., Chavarría, H., Castro, A., Rojas, P., Picado, E., & Bolaños, D. (2002). Metodología para estimar el nivel de desarrollo sostenible en espacios territoriales. Instituto Interamericano de Cooperación para la Agricultura (IICA). Enero. DOI: http://repositorio.iica.int/handle/11324/7696
  46. Sun, H., Mohsin, M., Alharthi, M., & Abbas, Q. (2020). Measuring environmental sustainability performance of South Asia. Journal of Cleaner Production, 251, 119519. doi:10.1016/j.jclepro.2019.119519 DOI: https://doi.org/10.1016/j.jclepro.2019.119519
  47. The Amazon Environmental Research Institute. IPAM. (2021). Amazonian municipalities dominate carbon emissions in Brazil. Retrieved from https://ipam.org.br/amazonian-municipalities-dominate-carbon-emissions-in-brazil/
  48. Toumi, O., Le Gallo, J., & Ben Rejeb, J. (2017). Assessment of Latin American sustainability. Renewable and Sustainable Energy Reviews, 78, 878-885. doi:10.1016/j.rser.2017.05.013 DOI: https://doi.org/10.1016/j.rser.2017.05.013
  49. United Nations. (2023). Climate change aggravates water scarcity in Argentina, Uruguay and Chile. Retrieved from https://www.iagua.es/noticias/onu/cambio-climatico-agrava-escasez-agua-argentina-uruguay-y-chile
  50. United Nations Framework Convention on Climate Change, (UNFCCC). (2021). Glasgow climate change conference October - November 2021. Retrieved from https://unfccc.int/conference/glasgow-climate-change-conference-october-november-2021
  51. United Nations Environment Programme. (2022). UNEP in 2022. Nairobi, Kenya: United Nations Environment Programme. doi:unep.org/annualreport
  52. Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845 DOI: https://doi.org/10.1080/01621459.1963.10500845
  53. World Bank. (2022). Environmental indicators. Retrieved

Downloads

Download data is not yet available.

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.