Ensilability and chemical composition of silages made with different mixtures of noni (Morinda citrifolia L.)

Main Article Content


Yoandris Pascual Sánchez, M.Sc. http://orcid.org/0000-0003-2270-5012
Cesar Betancur-Hurtado, M.Sc. http://orcid.org/0000-0001-7617-2202
Aroldo Botello-León, Ph. D. https://orcid.org/0000-0001-6709-2104
Kirenia Pérez-Corría, M.Sc. http://orcid.org/0000-0002-0216-328X
Cristina Ruiz-Corrales http://orcid.org/0000-0002-5023-0061
Yordan Martínez-Aguilar, Ph. D. http://orcid.org/0000-0003-2167-4904


The ensilability and chemical composition of silages made with different proportions (100:0; 90:10; 80:20; 70:30; 60:40 and 50:50%) of foliage (fresh and pre-wilted) and noni fruit (fresh) was evaluated. Some fermentative patterns of the original forages and the chemical content of the silages were determined. Correlations between the parameters of quality, chemical composition and the fruit levels in the mixture were made and adjusted the same one to polynomial equations. A higher inclusion of fruits with both fresh and pre-wilted foliage of noni decreases the pH and NH3-N Nt-1 in the silage. In addition, the increase in the level of fruit increased the concentration of water soluble carbohydrates (WSC) and the ratio of WSC/PC. Moreover, the pre-wilted foliage increased the dry matter (DM) content and its combination with fruit levels between 30 to 40% decreased the fibrous compounds and crude protein (CP) concentration in the silage. According to a cubic model used, the pre-wilted foliage and fruit proportions showed a higher R2 for DM, neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent-lignin (ADL) and cellulose, while CP and hemicelluloses were higher in the fresh plant material. The results showed that the pre-withered process (foliage) and inclusion levels of 30 and 40% of fruits in the mixture improved the quality of the silage intended for animals.


Article Details


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Licencia de Creative Commons

All papers included in the Revista Ciencia y Agricultura are published under  Creative Commons Attribution 4.0 International


Ali, M., Kenganora, M., & Manjula S. N. (2016). Health benefits of Morinda citrifolia (Noni): A review. Pharmacognosy Journal, 8(4): 321-334. DOI: https://doi.org/10.5530/pj.2016.4.4.

Amer, S., Hassanat, F., Berthiaume, R., Seguin, P., & Mustafa A. F. (2012). Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Animal Feed Science and Technology, 177(1-2): 23-29. DOI: https://doi.org/10.1016/j.anifeedsci.2012.07.024.

Arunachalam, V. (2018). Morinda citrifolia L. (Rubiaceae): a multi-purpose tree for coastal ecosystems and its variability in Konkan region of India. Genetic Resources and Crop Evolution, 65(6): 1751-1765. DOI: https://doi.org/10.1007/s10722-018-0642-5.

Borreani, G., Tabacco, E., Schmidt, R. J., Holmes, B. J., & Muck R. E. (2018). Silage review: Factors affecting dry matter and quality losses in silages. Journal of Dairy Science, 101(5): 3952-3979. DOI: https://doi.org/10.3168/jds.2017-13837.

Boschini, C., & Pineda, L. (2016). Kikuyu (Pennisetum clandestinun or Kikuyuocloa clandestina) silage fermented with three additives. Agronomía Mesoamericana, 27(1):49-60. DOI https://doi.org/10.15517/AM.V27I1.21895.

Canibe, N., & Jensen, B. B. (2011). Fermented liquid feed-microbial and nutritional aspects and impact on enteric diseases in pigs. Animal Feed Science and Technology, 173 (1-2): 17-40. DOI: https://doi.org/10.1016/j.anifeedsci.2011.12.021.

Conway, E. (1947). Microdiffusion analysis and volumetric error. London, England: Crosby Lockwood and Son Ltd.
Grant, R. J., & Ferraretto, L. F. (2018). Silage review: Silage feeding management: Silage characteristics and dairy cow feeding behavior. Journal of Dairy Science, 101(5): 4111-4121. DOI: https://doi.org/10.3168/jds.2017-13729.

Hernández, A., Pérez, J. M., & Boch, D. (1991). Nueva versión de la clasificación genética de los suelos de Cuba. Ciudad de La Habana, Cuba: AGROINFIR-MINAG.

Jha, R., & Berrocoso, J. F. (2016). Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, 212 (2): 18-26. DOI: https://doi.org/10.1016/j.anifeedsci.2015.12.002.

Ke, W. C., Yang, F. Y., Undersander, D. J., & Guo, X. S. (2015). Fermentation characteristics, aerobic stability, proteolysis and lipid composition of alfalfa silage ensiled with apple or grape pomace. Animal Feed Science Technology, 202(4): 12-19. DOI: https://doi.org/10.1016/j.anifeedsci.2015.01.009.

Kung, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5): 4020-4033. DOI: https://doi.org/10.3168/jds.2017-13909.

Martínez, Y., Carrión, Y., Rodríguez, R., Valdivié, M., Olmo, C., Betancur, C., Liu, G., Al-Dhabi, N., & Duraipandiyan, V. (2015). Growth Performance, organ weights and some blood parameters of replacement laying pullets fed with increasing levels of wheat bran. Revista Brasileña de Ciência Avícola, 17(3): 347-354. DOI: http://doi.org/10.1590/1516-635X1703347-354.

Official Methods of Analysis of International (AOAC). 18th ed. (2011). Maryland, USA: AOAC International.

Ozkul, H., Kilic, A., & Polat, M. (2011). Evaluation of mixtures of certain market wastes as silage. Asian-Australasia Journal of Animal Science, 24(9): 1243-1248. DOI: https://doi.org/10.5713/ajas.2011.10460.

Pieper, B., Hoedtke, S., Wensch, D. M., Korn, U., Wolf, P., & Zeyner, A. (2017) Validation of the Rostock fermentation test as an in vitro method to estimate ensilability of forages using glass jar model silages as a basis for comparison. Grass Forage Science, 72(3): 568-580. DOI: https://doi.org/10.1111/gfs.12259.

Pineda, L., Chacón, P., & Boschini, C. (2016). Evaluation of African star grass (Cynodon nlemfluensis) silage quality when mixed with three different additives. Agronomía Costarricense, 40(1): 11-27.

Pitt, R. E., Muck, R. E., & Leibensperger, R. Y. (1985). A quantitative model of the ensilage process in lactate silages. Grass Forage Science, 40(3): 279-303. DOI: https://doi.org/10.1111/j.1365-2494.1985.tb01755.x.

Potterat, O., & Hamburger, M. (2007). Morinda citrifolia (Noni) fruit-phytochemistry, pharmacology, safety. Planta Medica, 73(3):191-199. DOI: https://doi.org/10.1055/s-2007-967115.

Revuelta, D., Mosquera, D., & Cuba, F. (2008). Ensiling potential of orange fruit wastes (Citrus sinensis). Revista Ciencias Técnicas Agropecuarias, 17(2): 41-44.

Rivera, A., Cedillo, L., Hernández, F., Castillo, V., Sánchez, A., & Castañeda, D. (2012). Bioactive constituents in ethanolic extract leaves and fruit juice of Morinda citrifolia. Annals of Biological Research, 3(2): 1044-1049.

Rolz, C., De Leon, R., Cifuentes, R., & Porres, C. (2010). Windrow composting of sugarcane and coffee byproducts. Sugar Technology, 12(1): 15-20. DOI: https://doi.org/10.1007/s12355-010-0004-x.

Rosalizan, M. S., Rohani, M. Y., & Khatijah, I. (2010). Physico-chemical characteristics of Morinda citrifolia fruit during growth and maturation. Journal of Tropical Agriculture and Food Science, 38: 21-30.

Sakarkar, D. M., & Deshmukh, V. N. (2011). Ethnopharmacological review of traditional medicinal plants for anticancer activity. International Journal of Pharm Tech Research, 3(1): 298-308.

Salem, A. Z., Zhou, C. S., Tan, Z. L., Mellado, M., Salaza, C., Elghandopur, M. M., & Odongo, N. E. (2013). In vitro ruminal gas production kinetics of four fodder trees ensiled with or without molasses and urea. Journal of Integrative Agriculture, 12(7): 1234-124. DOI: https://doi.org/10.1016/S2095-3119(13)60438-4.

Sang, S., Cheng, X., Stark, R. E., Badmaev, V., Ghai, G., Rosen, R. T., & Ho, C. T. (2001). Flavonol glycosides and novel iridoid glycoside from the leaves of Morinda citrifolia. Journal of Agricultural and Food Chemistry, 49(9):4478-4481.DOI: https://doi.org/10.1021/jf010492e.

Santana, A., Cisneros, M., Martínez, Y., & Pascual, Y. (2015). Conservation and chemical composition of Leucaena leucocephala plus fresh or wilted Pennisetum purpureum mixed silages. Revista MVZ Córdoba, 20(1): 4895-4906. DOI: https://doi.org/10.21897/rmvz.5.

Santana, A., Pérez, A., & Figueredo, M. E. (2010) Optimal harvest age for napier grass (Pennisetum purpureum Schum.) during the rainy season based on yield and nutritional value. Revista Técnica Pecuaria, 1(3): 277-286.

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2.

Vandermeulen, S., Ramírez, C. A., Beckers, Y., Claessens, H., & Bindelle, J. (2018). Agroforestry for ruminants: a review of trees and shrubs as fodder in silvopastoral temperate and tropical production systems. Animal Production Science, 58(5): 767-777. DOI: https://doi.org/10.1071/AN16434.

Wang, X., Chen, Q., Bi, J., Gao, K., Zhou, L., Wu, X., & Lü, J. (2015). Effect of hot air-pulsed sudden decompression flashing drying on moisture and microstructure in apple slices. Transactions of the Chinese Society of Agricultural Engineering, 31(20): 287-293.

Weissbach, F., & Berg, K. (1977). Studies on the complete determination of the dry matter content of silages: 2. Communication: Methods for the determination and correction of the dry matter content. Archives of Animal Nutrition, 27: 69-84.

Wiseman, H. G., & Irvin, H. M. (1957). Silage analysis, determination of organic acids in silage. Journal of Agricultural and Food Chemistry, 5(3): 213-215. DOI: https://doi.org/10.1021/jf60073a007.

Zambello, E., Costa, C., De Beni, M., Silveira, A. C., Padovani, C. R., & Zambello, S. (2004). Fermentation and nutritive value of silage and hay made from the aerial part of cassava (Manihot esculenta Crantz). Scientia Agricola, 61(4): 364-370. DOI: http://dx.doi.org/10.1590/S0103-90162004000400003.

Zhao, L., Ren, L., Zhou, Z., Meng, Q., Huo, Y., & Wang, F. (2016). Improving ruminal degradability and energetic values of bamboo shoot shell using chemical treatments. Animal Science Journal, 87(7): 896-903. DOI: https://doi.org/10.1111/asj.12512.


Download data is not yet available.