Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Composición química de la lombriz de tierra (Eisenia foetida) presecada con harinas vegetales como alimento animal

Resumen

Para evaluar la composición química de la lombriz de tierra (Eisenia foetida) (LT) presecada con harinas vegetales (HV) como alimento animal, las mezclas se secaron individualmente y se elaboraron distintas premezclas con salvado de trigo (ST), polvo de arroz (PA), harina de maíz (HM) y harina de pasta de soya (HPS) en proporciones de 85:15; 75:25 y 65:35. Se determinó la materia seca (MS), proteína cruda (PC), grasa cruda (GC), fibra cruda (FC), cenizas y extracto libre de nitrógeno (ELN) de los ingredientes y de las mezclas finales. Todas las mezclas mostraron un alto contenido de MS (≥90.00 %). No se revelaron diferencias significativas entre las proporciones (P>0.05). La mayor inclusión de la lombriz de tierra en las proporciones (85:15) incrementó (P<0.05) la PC, GC y cenizas, principalmente cuando se mezcló con la harina de soya, harina de maíz y polvo de arroz, respectivamente. Sin embargo, el uso de las harinas vegetales incrementó proporcionalmente la FC (7,31 %) y el ELN (52.62 %), especialmente con la proporción de 65:35 y con PA y HM, respectivamente (P<0.05). Los resultados mostraron que las harinas de vegetales (WB, RP, CM y SCM) son útiles para presecar la lombriz de tierra para uso en la alimentación animal. Se concluye que la proporción más adecuada (VM:EW) dependerá de las especies animales, la etapa productiva y los requisitos del mercado.

Palabras clave

fuente de proteína, harina de maíz, harina de pasta de soya, lombriz de tierra, polvo de arroz, salvado de trigo

PDF (English) XML (English) FLIP (English)

Citas

Agrahar, D., & Jha, K. (2010). Effect of Drying of Nutritional and Functional Quality and Electrophoretic Pattern of Soyflour from Sprouted Soybean (Glycine max). Journal of Food Science and Technology, 47(5), 482-487. http://doi.org/10.1007/s13197-010-0082-5.

AOAC (2011). Official Methods of Analysis of AOAC International (18th ed.). Maryland, USA: AOAC International.

Bahadori, Z., Esmaielzadeh, L., Karimi, M. A., Seidavi, A., Olivares, J., Rojas, S., Salem, A. Z., & López, S. (2017). The Effect of Earthworm (Eisenia foetida) Meal with Vermi-Humus on Growth Performance, Hematology, Immunity, Intestinal Microbiota, Carcass Characteristics, and Meat Quality of Broiler Chickens. Livestock Science, 202(8), 74-81. http://doi.org/10.1016/j.livsci.2017.05.010.

Bahadori, Z., Esmaylzadeh, L., & Torshizi, M. A. (2015). The Effect of Earthworm (Eisenia fetida) and Vermihumus Meal in Diet on Broilers Chicken Efficiency and Carcass Components. Biological Forum, 7(1), 998-1005.

Bonazzi, C., & Dumoulin, E. (2011). Quality Changes in Food Materials as Influenced by Drying Processes. In E. Tsotsas & A.S. Mujumdar (eds.), Modern Drying Technology. Product Quality and Formulation (pp. 1-20). Berlin, Germany: Wiley VCH. https://doi.org/10.1002/9783527631667.ch1.

Botello, A. L., Cisneros, M., Viana, M. T., Valdivié, M., Ariza, E., Téllez, G. E., Solano, G., Rodríguez, Y., Gómez, I., Botello, A. R., Rodríguez, R., & Corría, K. P. (2011). Utilization of Proteinic Sugarcane Meal in the Feeding of Juvenile Red Tilapia. Cuban Journal of Agricultural Science, 45(4), 411-415.

Botello, L. A., Viana, M. T., Corría, K. P., Marcos, O. O., Machado, R. T., Morán, M. C., Hurtado, G. K., Cedeño, T. D., López, C. K., López, B. J., Chacón, M. E., Zambrano, C. N., & Ramírez, R. J. (2017). Caracterización nutricional y costos del residual de tilapia (Oreochromis niloticus) presecado con harinas vegetales. Revista Electrónica de Veterinaria, 18(4), 1-8.

Boulogne, S., Márquez, E., Zambrano, Y. E., Medina, A. L., & Cayot, P. (2008). Optimización de la operación de secado de la carne de lombriz (Eisenia andrei) para producir harina destinada al consumo animal. Ciencia e Ingeniería, 29(2), 91-96.

Căpriţă, R., Căpriţă, A., & Julean, C. (2010). Biochemical Aspects of Non-Starch Polysaccharides. Scientific Papers Animal Science and Biotechnologies, 43(1), 368-374.

Cayot, N., Cayot, P., Maroun, B. E., Laboure, H., Romero, A. B., Pernin, K., & Medina, A. L. (2009). Physico-chemical Characterisation of a Non-Conventional Food Protein Source from Earthworms and Sensory Impact in Arepas. International Journal of Food Science & Technology, 44(11), 2303-2313. https://doi.org/10.1111/j.1365-2621.2009.02074.x.

Córdova, M. G., Anaya, A. M., Ovando, J. A., García, J. A., & Silvano, E. J. (2013). Efecto del proceso de secado de la lombriz roja californiana (Eisenia foetida) en sus características nutricionales. Quehacer Científico en Chiapas, 8(2), 44-50.

Coulis, M., Bernard, L., Gérard, F., Hinsinger, P., Plassard, C., Villeneuve, M., & Blanchart, E. (2014). Endogeic Earthworms Modify Soil Phosphorus, Plant Growth and Interactions in a Legume–Cereal Intercrop. Plant and Soil, 379(1-2), 149-160. https://doi.org/10.1007/s11104-014-2046-4.

Duodu, C. P., Boateng, A. D., Edziyie, R. E., Agbo, N. W., Boateng, O. G., Larsen, B. K., & Skov, P. V. (2018). Processing Techniques of Selected Oilseed By-Products of Potential Use in Animal Feed: Effects on Proximate Nutrient Composition, Amino Acid Profile and Antinutrients. Animal Nutrition, 4(4), 442-451. https://doi.org/10.1016/j.aninu.2018.05.007.

Erbay, Z., & Hepbasli, A. (2014). Application of Conventional and Advanced Exergy Analyses to Evaluate the Performance of a Ground-Source Heat Pump (GSHP) Dryer Used in Food Drying. Energy Conversion and Management, 78(2), 499-507. https://doi.org/10.1016/j.enconman.2013.11.009.

Fagbenro, O. (1994). Dried Fermented Fish Silage in Diets for Oreochromis niloticus. The Israeli Journal of Aquaculture Bamidgeh, 46(3), 140-147.

Falcón, M. D., Barrón, J. M., Romero, A. L., & Domínguez, M. F. (2011). Efecto adverso en la calidad proteica de los alimentos de dietas con alto contenido de fibra dietaria. Revista Chilena de Nutrición, 38(3), 356-367. https://doi.org/10.4067/S0717-75182011000300012.

Falowo, A. B., Mukumbo, F. E., Idamokoro, E. M., Lorenzo, J. M., Afolayan, A. J., & Muchenje, V. (2018). Multi-Functional Application of Moringa oleifera Lam. in Nutrition and Animal Food Products: A Review. Food Research International, 106(4), 317-334. https://doi.org/10.1016/j.foodres.2017.12.079.

García, M. D., Oruña, L., Domínguez, H., & Martínez, V. (2005). Evaluación de la calidad proteica de harina de lombriz (Eisenia foetida) en ratas en crecimiento. Revista Cubana de Ciencia Agrícola, 39(3), 333-338.

Goddard, J. S., & Perret, J. S. (2005). Co-Drying Fish Silage for Use in Aquafeeds. Animal Feed Science and Technology, 118(3), 337-342. https://doi.org/10.1016/j.anifeedsci.2004.11.004.

Gunya, B., Masika, P. J., Hugo, A., & Muchenje, V. (2016). Nutrient Composition and Fatty Acid Profiles of Oven-Dried and Freeze-Dried Earthworm Eisenia foetida. Journal of Food and Nutrition Research, 4(6), 343-348. https://doi.org/10.12691/jfnr-4-6-1.

Gunya, B., Muchenje, V., & Masika, P. J. (2019). The Potential of Eisenia foetida as a Protein Source on the Growth Performance, Digestive Organs Size, Bone Strength and Carcass Characteristics of Broilers. The Journal of Applied Poultry Research, 0, 1–9. https://doi.org/10.3382/japr/pfy081.

Guptaa, M., Shikhab, K. S., & Tewaria, S. K. (2014). Quality Evaluation of Vermicompost at Various Phases of Farm Waste Composting and During Storage. Advances in Bioresearch, 5(1), 56-63. https://doi.org/10.15515/abr.0976-4585.5.56-63.

Ibáñez, I. A., Herrera, C. A., Velásquez, L. A., & Hebel, P. (1993). Nutritional and Toxicological Evaluation on Rats of Earthworm (Eisenia fetida) Meal as Protein Source for Animal Feed. Animal Feed Science and Technology, 42(1-2), 165-172. https://doi.org/10.1016/0377-8401(93)90031-E.

Jiménez, M. E., Coca, S. A., González, J. M., & Mateos, G. G. (2016). Inclusion of Insoluble Fiber Sources in Mash or Pellet Diets for Young Broilers. 1. Effects on Growth Performance and Water Intake. Poultry Science, 95(1), 41-52. https://doi.org/10.3382/ps/pev309.

Kızılkaya, R., & Türkay, F. Ş. (2014). Vermicomposting of Anaerobically Digested Sewage Sludge with Hazelnut Husk and Cow Manure by Earthworm Eisenia foetida. Compost Science & Utilization, 22(2), 68-82. https://doi.org/10.1080/1065657X.2014.895454.

Kuforiji, O. O., Agunbiade, J. A., Awojobi, H. A., & Eniolorunda, O. O. (2016). Feeding Value of Cassava Products Supplemented with Earthworm Meal in Diets of Growing Rabbits. Tropical Agriculture, 93(3), 197-208.

Langer, S., Bakhtiyar, Y., & Lakhnotra, R. (2011). Replacement of Fishmeal with Locally Available Ingredients in Diet Composition of Macrobrachium dayanum. African Journal of Agricultural Research, 6(5), 1080-1084.

Maková, J., Javoreková, S., Elbl, J., Medo, J., Hricáková, N., & Kováčik, P. (2019). Impact of Vermicompost on Biological Indicators of the Quality of Soil under Maize in a Greenhouse Experiment. Journal of Elementology, 24(1), 319-330. https://doi.org/10.5601/jelem.2017.22.4.1548.

Martínez, Y., Carrión, Y., Rodríguez, R., Valdivié, M., Olmo, C., Betancur, C., & Liu, G. (2015). Growth Performance, Organ Weights and Some Blood Parameters in Replacement Laying Pullets Fed with Increasing Levels of Wheat Bran. Brazilian Journal of Poultry Science, 17(3), 347-354. http://doi.org/10.1590/1516-635x1703347-354.

Martínez, Y., Li, X., Liu, G., Bin, P., Yan, W., Más, D., Valdivié, M., Hu, C. A., Re, W., & Yin, Y. L. (2017). The Role of Methionine on Metabolism, Oxidative Stress and Diseases. Amino Acids, 49(12), 2091-2098. https://doi.org///10.1007/s00726-017-2494-2.

Mohanta, K. N., Subramanian, S., & Korikanthimath, V. S. (2016). Potential of Earthworm (Eisenia foetida) as Dietary Protein Source for Rohu (Labeo rohita) Advanced Fry. Cogent Food & Agriculture, 2(1), 1138594. https://doi.org/10.1080/23311932.2016.1138594.

Morillo, M., Visbal, T., Altuve, D., Ovalles, F., & Medina, A. L. (2013). Valoración de dietas para alevines de Colossoma macropomum utilizando como fuentes proteicas harinas: de lombriz (Eisenia foetida), soya (Glycine max) y caraotas (Phaseolus vulgaris). Revista Chilena de Nutrición, 40(2), 147-154. https://doi.org/10.4067/S0717-75182013000200009.

National Research Council -NRC- (1994). Nutrient Requirements of Poultry. (9th ed.). Washington: Academy Press.

Ncobela, C. N., & Chimonyo, M. (2015). Potential of Using Non-Conventional Animal Protein Sources for Sustainable Intensification of Scavenging Village Chickens: A Review. Animal Feed Science and Technology, 208, 1-11. https://doi.org/10.1016/j.anifeedsci.2015.07.005

Olmo, C., Martínez, Y., León, E., Leyva, L., Nuñez, M., Rodríguez, R., Labrada, A., Iser, M., Betancur, C., Merlos M., & Liu, G. (2012). Effect of Mulberry Foliage (Morus alba) Meal on Growth Performance and Edible Portions in Hybrid Chickens. International Journal of Animal and Veterinary Advances, 4(4), 263-268.

Ovalles, J., Medina, A., Márquez, E., & Rial, L. (2017). Efecto del proceso de secado de la lombriz de tierra (Eisenia andrei) sobre el perfil aminoacídico de la harina determinado por cromatografía. Saber, 29, 486-494. https://doi.org/10.4067/s0717-75182008000300008.

Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine Macroalgae as Sources of Protein and Bioactive Compounds in Feed for Monogastric Animals. Journal of the Science of Food and Agriculture, 99(1), 13-24. https://doi.org/10.1002/jsfa.9143

Rezaeipour, V., Nejad, O. A., & Miri, H. Y. (2014). Growth Performance, Blood Metabolites and Jejunum Morphology of Broiler Chickens Fed Diets Containing Earthworm (Eisenia foetida) Meal as a Source of Protein. International Journal of Advanced Biological and Biomedical Research, 2(8), 2483-2494.

Rojas, O. J., Vinyeta, E., & Stein, H. H. (2016). Effects of Pelleting, Extrusion, or Extrusion and Pelleting on Energy and Nutrient Digestibility in Diets Containing Different Levels of Fiber and Fed to Growing Pigs. Journal of Animal Science, 94(5), 1951-1960. https://doi.org/10.2527/jas2015-0137.

Sánchez, Y. P., Betancur, H. C., Botello, A. L., Pérez, K. C., Ruiz, C. C., & Martínez, Y. A. (2019). Ensilability and Chemical Composition of Silages Made with Different Mixtures of Noni (Morinda citrifolia L.). Ciencia y Agricultura, 16(1), 3-16. https://doi.org/10.19053/01228420.v16.n1.2019.8802.

Savón, L., Scull, I., & Martínez, M. (2007). Integral Foliage Meal for Poultry Feeding. Chemical Composition, Physical Properties and Phytochemical Screening. Cuban Journal of Agricultural Science, 41(2), 359-361.

Sharma, K., & Garg, V. K. (2018). Comparative Analysis of Vermicompost Quality Produced from Rice Straw and Paper Waste Employing Earthworm Eisenia fetida (Sav.). Bioresource Technology, 250, 708-715. https://doi.org/10.1016/j.biortech.2017.11.101.

Singh, R., Srivastava, P., Singh, P., Upadhyay, S., & Raghubanshi, A. S. (2019). Human Overpopulation and Food Security: Challenges for the Agriculture Sustainability. In Khosrow-Pour. (ed.), Urban Agriculture and Food Systems: Breakthroughs in Research and Practice (pp. 439-467). Pennsylvania, United States: IGI Global. https://doi.org/10.4018/978-1-5225-8063-8.ch022.

Smárason, B. Ö., Alriksson, B., & Jóhannsson, R. (2018). Safe and Sustainable Protein Sources from the Forest Industry–The Case of Fish Feed. Trends in Food Science & Technology, 84, 12-14. https://doi.org/10.1016/j.tifs.2018.03.005.

Sogbesan, A. O., & Ugwumba, A. A. (2008). Nutritional Values of Some Non-Conventional Animal Protein Feedstuffs Used as Fishmeal Supplement in Aquaculture Practices in Nigeria. Turkish Journal of Fisheries and Aquatic Sciences, 8(1), 159-164.

Szukl, P., Podkowaka, Z., Bocianowski, J., Krauklis, D., & Wilczewska, W. (2018). Chemical Composition and Nutritional Value of Maize Grains from Cultivars of Different Breeding and Seed Companies. Journal of Research and Applications in Agricultural Engineering, 63(4), 203-208.

Tiroesele, B., & Moreki, J. C. (2012). Termites and Earthworms as Potential Alternative Sources of Protein for Poultry. International Journal for Agro Veterinary and Medical Sciences, 6, 368-76. https://doi.org/10.5455/ijavms.174.

Valverde, D. M. (2010). Usos de la morera (Morus alba) en la alimentación del conejo. El rol de la fibra y la proteína en el tracto digestivo. Agronomía Mesoamericana, 21(2), 357-366. https://doi.org/10.15517/am.v21i2.4900.

Vidotti, R. M., Carneiro, D. J., & Viegas, E. (2002). Growth Rate of Pacu, Piaractus mesopotamicus, Fingerlings Fed Diets Containing Co-Dried Fish Silage as Replacement of Fish Meal. Journal of Applied Aquaculture, 12(4), 77-88. https://doi.org/10.1300/J028v12n04_07.

Vielma, R. R., Durán, J. F., León, L. A., & Medina, A. (2003). Valor nutritivo de la harina de lombriz (Eisenia foetida) como fuente de aminoácidos y su estimación cuantitativa mediante cromatografía en fase reversa (HPLC) y derivatización precolumna con o-ftalaldehído (OPA). Ars Pharmaceutica, 44(1), 43-58.

Yang, F., Wang, L., Wang, G., Du, P., & Zhang, Y. (2015). Organic Matter and Nitrogen Distribution, and Functional Groups of Filter at Earthworm Packing Bed in Vermifiltration. Polish Journal of Environmental Studies, 24(1), 375-380.

Zhenjun, S., Xianchun, L., Lihui, S., & Chunyang, S. (1997). Earthworm as a Potential Protein Resource. Ecology of Food and Nutrition, 36(2-4), 221-236. https://doi.org/10.1080/03670244.1997.9991517.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a