Reacciones comunes de Furfural en procesos escalables de Biomasa Residual

Contenido principal del artículo

Autores

Alejandra Rodríguez-Montaña https://orcid.org/0000-0001-5959-3670
Maria H. Brijaldo
Leidy Y. Rache https://orcid.org/0000-0002-9275-6205
Ludmila P. C. Silva
Laura M. Esteves

Resumen

La energía y el medio ambiente siempre desempeñarán papeles clave en la sociedad. No se puede descartar la emergencia climática para permitir la transición hacia un futuro de energía limpia. Actualmente, los recursos energéticos no renovables están disminuyendo, por lo tanto, es importante explorar continuamente los recursos renovables. La biomasa es un recurso renovable que se puede aplicar para reducir los cambios climáticos y lograr políticas de emisión. La celulosa es el tipo de biomasa más abundante en todo el mundo, que se puede transformar en biocombustibles y moléculas de plataforma de bloques de construcción potenciales (por ejemplo, furfural) a través de métodos biológicos o químicos. El furfural se puede sintetizar a partir de celulosa utilizando reacciones de hidrólisis y deshidratación. Furfural tiene un anillo furano y un grupo funcional carbonilo que lo convierte en un intermediario importante para producir moléculas de mayor valor agregado a nivel industrial. Estas moléculas incluyen gasolina, diesel y combustible para aviones. Sin embargo, el furfural también se puede transformar por hidrogenación, oxidación, descarboxilación y reacciones de condensación. La hidrogenación selectiva de furfural produce alcohol furfurílico, un importante compuesto industrial, que se emplea ampliamente en la producción de resinas y fibras, y se considera un producto esencial para aplicaciones farmacéuticas. Por otro lado, la oxidación del furfural produce ácido furoico que se aplica en la industria agroquímica, donde comúnmente se transforma en cloruro de furoilo que finalmente se usa en la producción de drogas e insecticidas. La oxidación y reducción de furfural puede llevarse a cabo mediante catálisis heterogénea y homogénea, y biocatálisis. La selectividad es un tema importante en las reacciones de hidrogenación y oxidación furfural ya que se pueden obtener diferentes productos usando catalizadores monometálicos o bimetálicos y / o diferentes soportes de catalizador. En el enfoque de biocatálisis, se utilizan diferentes enzimas, células completas, herramientas de biotecnología moderna, secuenciación de ADN, regulación de redes metabólicas, sobreexpresión de genes que codifican enzimas de interés y optimización de las propiedades celulares del microorganismo. Aquí, se ha estudiado una revisión sobre el estado actual de la producción de alcohol furfurílico y ácido furoico a partir de furfural por catálisis y biocatálisis heterogéneas. Se ha señalado la estabilidad, selectividad y actividad de los catalizadores junto con las diferentes condiciones de oxidación y reducción de furfural. Además, también se han discutido las principales enzimas, microorganismos y mecanismos involucrados en el proceso de degradación furfural.

Palabras clave:

Detalles del artículo

Referencias

[1] UNFCCC, Adoption of the Paris Agreement. United Nations Framework Convention on Climate Change. 2015.

[2] R. B. Jackson et al., “Warning signs for stabilizing global CO2 emissions,” Environ. Res. Lett., vol. 12, no. 11, p. 110204, 2017, doi: 10.1088/1748-9326/aa9662.

[3] S. Nabernegg, B. Bednar-Friedl, P. Muñoz, M. Titz, and J. Vogel, “National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains,” Ecol. Econ, vol. 158, pp. 146–157, 2019, doi: 10.1016/j.ecolecon.2018.12.006.

[4] S. Hansen, A. Mirkouei, and L. A. Diaz, “A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels,” Renew. Sustain. Energy Rev., vol. 118, no. June 2019, p. 109548, 2020, doi: 10.1016/j.rser.2019.109548.

[5] REN21, “Renewables 2018 Global Status Report,” Paris, 2018.

[6] P. C. Torres-Mayanga et al., “Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review,” Biomass and Bioenergy, vol. 130, no. June, p. 105397, 2019, doi: 10.1016/j.biombioe.2019.105397.

[7] I. E. Agency, “Market Report Series: Oil 2018. Analysis and forecasts to 2023,” Paris, 2018.

[8] L. M. Esteves et al., “Effect of support on selective 5-hydroxymethylfurfural hydrogenation towards 2,5-dimethylfuran over copper catalysts,” Fuel, vol. 270, no. January, p. 117524, 2020, doi: 10.1016/j.fuel.2020.117524.

[9] A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chem., vol. 36, no. 207890, pp. 2729–2747, 2019, doi: 10.1039/c7gc01078h.

[10] X. Li, P. Jia, and T. Wang, “Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals,” ACS Catal., vol. 6, no. 11, pp. 7621–7640, 2016, doi: 10.1021/acscatal.6b01838.

[11] J. Ma et al., “Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels,” J. Energy Chem, vol. 36, pp. 74–86, 2019, doi: 10.1016/j.jechem.2019.04.026.

[12] Y. Luo et al., “The production of furfural directly from hemicellulose in lignocellulosic biomass: A review,” Catal. Today, vol. 319, pp. 14–24, 2019, doi: 10.1016/j.cattod.2018.06.042.

[13] A. Bohre, S. Dutta, B. Saha, and M. M. Abu-Omar, “Upgrading Furfurals to Drop-in Biofuels: An Overview,” ACS Sustain. Chem. Eng., vol. 3, no. 7, pp. 1263–1277, 2015, doi: 10.1021/acssuschemeng.5b00271.

[14] M. Kabbour and R. Luque, “Furfural as a platform chemical: From production to applications,” in Biomass, Biofuels, Biochemicals, Elsevier B.V., Ed. 2020, pp. 283–297.

[15] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, “Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 1144–1189, 2016, doi: 10.1039/C5EE02666K.

[16] P. Rachamontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, and K. Rattanaporn, “Furfural: A Sustainable Platform Chemical and Fuel,” Appl. Sci. Eng. Prog., vol. 13, no. 1, pp. 3–10, 2020, doi: 10.14416/j.asep.2020.01.003.

[17] M. Dashtban, A. Gilbert, and P. Fatehi, “Production of furfural: Overview and challenges,” J-for, vol. 2, no. 4, pp. 44–53, 2012.

[18] H. J. Brownlee and C. S. Miner, “Industrial Development of Furfural,” Ind. Eng. Chem., vol. 40, no. 2, pp. 201–204, Feb. 1948, doi: 10.1021/ie50458a005.

[19] S. G. Wettstein, D. Martin Alonso, E. I. Gürbüz, and J. A. Dumesic, “A roadmap for conversion of lignocellulosic biomass to chemicals and fuels,” Curr. Opin. Chem. Eng., vol. 1, no. 3, pp. 218–224, 2012, doi: 10.1016/j.coche.2012.04.002.

[20] R. Karinen, K. Vilonen, and M. Niemelä, “Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural,” ChemSusChem, vol. 4, no. 8, pp. 1002–1016, 2011, doi: 10.1002/cssc.201000375.

[21] C. M. Cai, T. Zhang, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” no. April, 2013, doi: 10.1002/jctb.4168.

[22] M and Markets, “Furfural Market,” 2020.

[23] T. M. Research, “Furfural Derivatives Market,” 2020.

[24] K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renew. Sustain. Energy Rev., vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003.

[25] Y. Wang, D. Zhao, D. Rodríguez-Padrón, and C. Len, “Recent advances in catalytic hydrogenation of furfural,” Catalyst, vol. 9, pp. 1–33, 2019, doi: 10.3390/catal9100796.

[26] J. Long, W. Zhao, H. Li, and S. Yang, “Furfural as a renewable chemical platform for furfuryl alcohol production,” in Biomass, Biofuels, Biochemicals, 2020, pp. 299–322.

[27] B. H. Wojcik, “Catalytic hydrogenationof furan compounds,” Ind. Eng. Chem. Res., vol. 40, no. 2, pp. 210–215, 1948.

[28] R. López-Asensio, J. A. Cecilia, C. P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, and P. Maireles-Torres, “Selective production of furfuryl alcohol from furfural by catalytic transfer hydrogenation over commercial aluminas,” Appl. Catal. A Gen., vol. 556, no. November 2017, pp. 1–9, 2018, doi: 10.1016/j.apcata.2018.02.022.

[29] Á. O. Driscoll, J. J. Leahy, and T. Curtin, “The influence of metal selection on catalyst activity for the liquid phase hydrogenation of furfural to furfuryl alcohol,” Catal. Today, 2016, doi: 10.1016/j.cattod.2016.06.013.

[30] M. Douthwaite et al., “The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2,” Catal. Sci. Technol., vol. 7, no. 22, pp. 5284–5293, 2017, doi: 10.1039/c7cy01025g.

[31] K. J. Zeitsch, “Furoic acid,” in Sugar Series, vol. 13, 2000, pp. 159–163.

[32] N. K. Gupta, A. Fukuoka, and K. Nakajima, “Metal-free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst,” Sustain. Chem. Eng., 2018, doi: 10.1021/acssuschemeng.7b03681.

[33] C. D. Hurd, J. W. Garrett, and E. N. Osborne, “Furan Reactions. IV. Furoic Acid from Furfural,” J. Am. Chem. Soc., vol. 55, no. 3, pp. 1082–1084, 1933, doi: 10.1021/ja01330a032.

[34] Q. Tian, D. Shi, and Y. Sha, “CuO and Ag2O/CuO catalyzed oxidation of aldehydes to the corresponding carboxylic acids by molecular oxygen,” Molecules, vol. 13, no. 4, pp. 948–957, 2008, doi: 10.3390/molecules13040948.

[35] P. Verdeguer, N. Merat, and A. Gaset, “Lead/platinum on charcoal as catalyst for oxidation of furfural. Effect of main parameters,” Appl. Catal. A, Gen., vol. 112, no. 1, pp. 1–11, 1994, doi: 10.1016/0926-860X(94)80133-9.

[36] B. Zhou, J. Song, Z. Zhang, Z. Jiang, P. Zhanga, and B. Han, “Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2,” Sustain. Chem. Eng., 2016, doi: 10.1039/C6GC03022J.

[37] U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins, “Engineering the third wave of biocatalysis,” Nature, vol. 485, no. 7397, pp. 185–194, 2012, doi: 10.1038/nature11117.

[38] X. Li, P. Jia, and T. Wang, “Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals,” ACS Catal., 2016.

[39] A. Pellis, E. Herrero Acero, V. Ferrario, D. Ribitsch, G. M. Guebitz, and L. Gardossi, “The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters,” Trends Biotechnol., vol. 34, no. 4, pp. 316–328, 2016, doi: 10.1016/j.tibtech.2015.12.009.

[40] F. Koopman, N. Wierckx, J. H. de Winde, and H. J. Ruijssenaars, “Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14,” Proc. Natl. Acad. Sci., vol. 107, no. 11, pp. 4919–4924, 2010, doi: 10.1073/pnas.0913039107.

[41] X. Wang, I. Khushk, Y. Xiao, Q. Gao, and J. Bao, “Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution,” Appl. Microbiol. Biotechnol., vol. 102, no. 1, pp. 377–388, 2018, doi: 10.1007/s00253-017-8627-4.

[42] R. V. Sharma, U. Das, R. Sammynaiken, and A. K. Dalai, “Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol,” Appl. Catal. A Gen., vol. 454, pp. 127–136, 2013, doi: 10.1016/j.apcata.2012.12.010.

[43] V. Ponec, “On the role of promoters in hydrogenations on metals; α , β-unsaturated aldehydes and ketones,” Appl. Catal. A Gen., vol. 149, no. 1, pp. 27–48, 1997, doi: 10.1016/S0926-860X(96)00250-5.

[44] M. S. Ide, B. Hao, M. Neurock, and R. J. Davis, “Mechanistic insights on the hydrogenation of α,β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts,” ACS Catal., vol. 2, no. 4, pp. 671–683, 2012, doi: 10.1021/cs200567z.

[45] H. Rojas, J. J. Martínez, and P. Reyes, “Kinetic behavior in the hydrogenation of furfural over Ir catalysts supported on TiO2,” DYNA, vol. 77, no. 163, pp. 151–159, 2010.

[46] R. F. Perez and M. A. Fraga, “Hemicellulose-derived chemicals: One-step production of furfuryl alcohol from xylose,” Green Chem., vol. 16, no. 8, pp. 3942–3950, 2014, doi: 10.1039/c4gc00398e.

[47] S. Alijani et al., “Capping agent effect on pd-supported nanoparticles in the hydrogenation of furfural,” Catalysts, vol. 10, no. 1, pp. 1–16, 2019, doi: 10.3390/catal10010011.

[48] G. S. Babu, V. Rekha, S. Francis, and N. Lingaiah, “Vapour Phase Selective Hydrogenation of Furfural to Furfuryl Alcohol Over Cu–Cr–Zn Mixed Oxide Catalysts Prepared by Utilizing Gamma Radiation,” Catal. Lett., vol. 149, no. 10, pp. 2758–2766, 2019, doi: 10.1007/s10562-019-02815-6.

[49] X. Yang, H. Chen, Q. Meng, H. Zheng, Y. Zhu, and Y. W. Li, “Insights into influence of nanoparticle size and metal-support interactions of Cu/ZnO catalysts on activity for furfural hydrogenation,” Catal. Sci. Technol., vol. 7, no. 23, pp. 5625–5634, 2017, doi: 10.1039/c7cy01284e.

[50] X. Yang et al., “Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components,” Appl. Catal. A Gen., vol. 561, pp. 78–86, 2018, doi: 10.1016/j.apcata.2018.04.005.

[51] F. Tang, L. Wang, M. Dessie Walle, A. Mustapha, and Y. N. Liu, “An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural,” J. Catal., vol. 383, pp. 172–180, 2020, doi: 10.1016/j.jcat.2020.01.019.

[52] F. Li, S. Jiang, T. Zhu, Y. Wang, T. Huang, and C. Li, “Organodiphosphonate Metal‐Organic Frameworks Derived Ni‐P@C Catalyst for Hydrogenation of Furfural,” ChemistrySelect, vol. 5, no. 7, pp. 2271–2278, 2020, doi: 10.1002/slct.201902827.

[53] C. P. Jiménez-Gómez, C. Defilippi, J. A. Cecilia, R. Moreno-Tost, P. Maireles-Torres, and C. Giordano, “The role of nitride species in the gas-phase furfural hydrogenation activity of supported nickel catalysts,” Mol. Catal., vol. 487, pp. 1–12, 2020, doi: 10.1016/j.mcat.2020.110889.

[54] L. Ruan et al., “A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures,” Mol. Catal., vol. 480, no. September 2019, p. 110639, 2020, doi: 10.1016/j.mcat.2019.110639.

[55] P. Liu et al., “Kinetics of Furfural Hydrogenation over Bimetallic Overlayer Catalysts and the Effect of Oxygen Vacancy Concentration on Product Selectivity,” ChemCatChem, vol. 11, no. 14, pp. 3296–3306, 2019, doi: 10.1002/cctc.201900625.

[56] M. J. Taylor et al., “Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions,” Appl. Catal. B Env., vol. 180, pp. 580–585, 2016, doi: 10.1016/j.apcatb.2015.07.006.

[57] A. Jouve et al., “Furfural hydrogenation on modified niobia,” Appl. Sci., vol. 9, no. 11, pp. 1–14, 2019, doi: 10.3390/app9112287.

[58] A. B. Merlo, V. Vetere, J. F. Ruggera, and M. L. Casella, “Bimetallic PtSn catalyst for the selective hydrogenation of furfural to furfuryl alcohol in liquid-phase,” Catal. Commun., vol. 10, no. 13, pp. 1665–1669, 2009, doi:
10.1016/j.catcom.2009.05.005.

[59] A. B. Merlo, V. Vetere, J. M. Ramallo-López, F. G. Requejo, and M. L. Casella, “Liquid-phase furfural hydrogenation employing silica-supported PtSn and PtGe catalysts prepared using surface organometallic chemistry on metals techniques,” React. Kinet. Mech. Catal., vol. 104, no. 2, pp. 467–482, 2011, doi: 10.1007/s11144-011-0374-4.

[60] T. W. Goh, C.-K. Tsung, and W. Huang, “Spectroscopy Identification of the Bimetallic Surface of Metal–Organic Framework-Confined Pt–Sn Nanoclusters with Enhanced Chemoselectivity in Furfural Hydrogenation,” ACS Appl. Mater. Interfaces, vol. 11, no. 26, pp. 23254–23260, Jul. 2019, doi: 10.1021/acsami.9b06229.

[61] F. Li, W. Zhu, S. Jiang, Y. Wang, H. Song, and C. Li, “Catalytic transfer hydrogenation of furfural to furfuryl alcohol over Fe3O4 modified Ru/Carbon nanotubes catalysts,” Int. J. Hydrogen Energy, vol. 45, no. 3, pp. 1–10, 2019, doi: 10.1016/j.ijhydene.2019.11.139.

[62] L. J. Durndell, G. Zou, W. Shangguan, A. F. Lee, and K. Wilson, “Structure-Reactivity Relations in Ruthenium Catalysed Furfural Hydrogenation,” ChemCatChem, vol. 11, no. 16, pp. 3927–3932, 2019, doi: 10.1002/cctc.201900481.

[63] T. Fovanna et al., “Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural,” RSC Adv., vol. 10, no. 19, pp. 11507–11516, 2020, doi: 10.1039/d0ra00415d.

[64] X. Tong, Z. Liu, L. Yu, and Y. Li, “A tunable process: Catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen,” Chem. Commun., vol. 51, no. 17, pp. 3674–3677, 2015, doi: 10.1039/c4cc09562f.

[65] Y. Gao, X. Tong, and H. Zhang, “A selective oxidative valorization of biomass-derived furfural and ethanol with the supported gold catalysts,” Catal. Today, pp. 1–8, 2019, doi: 10.1016/j.cattod.2019.05.002.

[66] M. Signoretto, F. Menegazzo, L. Contessotto, F. Pinna, M. Manzoli, and F. Boccuzzi, “Au/ZrO2: An efficient and reusable catalyst for the oxidative esterification of renewable furfural,” Appl. Catal. B Environ., vol. 129, pp. 287–293, 2013, doi: 10.1016/j.apcatb.2012.09.035.

[67] F. Pinna et al., “The effects of gold nanosize for the exploitation of furfural by selective oxidation,” Catal. Today, vol. 203, pp. 196–201, 2013, doi: 10.1016/j.cattod.2012.01.033.

[68] F. Menegazzo et al., “Oxidative esterification of renewable furfural on gold-based catalysts: Which is the best support?,” J. Catal., vol. 309, pp. 241–247, 2014, doi: 10.1016/j.jcat.2013.10.005.

[69] N. Alonso-Fagúndez, I. Agirrezabal-Telleria, P. L. Arias, J. L. G. Fierro, R. Mariscal, and M. L. Granados, “Aqueous-phase catalytic oxidation of furfural with H2O2: High yield of maleic acid by using titanium,” RSC Adv., vol. 4, no. 98, pp. 54960–54972, 2014, doi: 10.1039/c4ra11563e.

[70] N. Alonso-Fagúndez, M. Ojeda, R. Mariscal, J. L. G. Fierro, and M. López Granados, “Gas phase oxidation of furfural to maleic anhydride on V2O5/Al2O3 catalysts: Reaction conditions to slow down the deactivation,” J. Catal., vol. 348, pp. 265–275, 2017, doi: 10.1016/j.jcat.2016.12.005.

[71] M. Rezaei, A. Najafi Chermahini, H. A. Dabbagh, M. Saraji, and A. Shahvar, “Furfural oxidation to maleic acid with H2O2 by using vanadyl pyrophosphate and zirconium pyrophosphate supported on well-ordered mesoporous KIT-6,” J. Environ. Chem. Eng., vol. 7, no. 1, p. 102855, 2019, doi: 10.1016/j.jece.2018.102855.

[72] P. Santander, L. Bravo, G. Pecchi, and A. Karelovic, “The consequences of support identity on the oxidative conversion of furfural to maleic anhydride on vanadia catalysts,” Appl. Catal. A Gen., vol. 595, no. December 2019, p. 117513, 2020, doi: 10.1016/j.apcata.2020.117513.

[73] C. P. Ferraz, A. G. M. Da Silva, T. S. Rodrigues, P. H. C. Camargo, S. Paul, and R. Wojcieszak, “Furfural oxidation on gold supported on MnO2: Influence of the support structure on the catalytic performances,” Appl. Sci., vol. 8, no. 8, 2018, doi: 10.3390/app8081246.

[74] A. Roselli, Y. Carvalho, F. Dumeignil, F. Cavani, S. Paul, and R. Wojcieszak, “Liquid phase furfural oxidation under uncontrolled pH in batch and flow conditions: The role of in situ formed base,” Catalysts, vol. 10, p. 73, 2020, doi: 10.3390/catal10010073.

[75] M. Douthwaite et al., “The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH) 2,” Catal. Sci. Technol., vol. 7, no. 22, pp. 5284–5293, 2017, doi: 10.1039/C7CY01025G.

[76] B. Singh, A. Verma, Pooja, P. K. Mandal, and S. Datta, “A biotechnological approach for degradation of inhibitory compounds present in lignocellulosic biomass hydrolysate liquor using Bordetella sp. BTIITR,” Chem. Eng. J., vol. 328, pp. 519–526, 2017, doi: 10.1016/j.cej.2017.07.059.

[77] H. Ran, J. Zhang, Q. Gao, Z. Lin, and J. Bao, “Analysis of biodegradation performance of furfural and 5- hydroxymethylfurfural by Amorphotheca resinae ZN1,” Biotechnol. Biofuels, vol. 7, no. 1, pp. 1–12, 2014, doi: 10.1186/1754-6834-7-51.

[78] F. M. Lin, B. Qiao, and Y. J. Yuan, “Comparative proteomic analysis of tolerance and adaptation of ethanologenic Saccharomyces cerevisiae to furfural, a lignocellulosic inhibitory compound,” Appl. Environ. Microbiol., vol. 75, no. 11, pp. 3765–3776, 2009, doi: 10.1128/AEM.02594-08.

[79] M. Ma and Z. L. Liu, “Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae,” BMC Genomics, vol. 11, no. 1, p. 660, 2010, doi: 10.1186/1471-2164-11-660.

[80] C. Kisker, H. Schindelin, D. Baas, J. Rétey, R. U. Meckenstock, and P. M. H. Kroneck, “A structural comparison of molybdenum cofactor-containing enzymes,” FEMS Microbiol. Rev., vol. 22, no. 5, pp. 503–521, 1998, doi: 10.1016/S0168-6445(98)00040-0.

[81] R. Boopathy, H. Bokang, and L. Daniels, “Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria,” J. Ind. Microbiol., vol. 11, no. 3, pp. 147–150, 1993, doi: 10.1007/BF01583715.

[82] I. Sárvári Horváth, C. J. Franzén, M. J. Taherzadeh, C. Niklasson, and G. Lidén, “Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats.,” Appl. Environ. Microbiol., vol. 69, no. 7, pp. 4076–86, 2003, doi: 10.1128/AEM.69.7.4076.

[83] K. Mitsukura, Y. Sato, T. Yoshida, and T. Nagasawa, “Oxidation of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids by Acetobacter and Serratia strains,” Biotechnol. Lett., vol. 26, no. 21, pp. 1643–1648, 2004, doi: 10.1007/s10529-004-3513-4.

[84] M. J. López, J. Moreno, N. N. Nichols, B. S. Dien, and R. J. Bothast, “Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates,” Appl. Microbiol. Biotechnol., vol. 64, no. 1, pp. 125–131, 2004, doi: 10.1007/s00253-003-1401-9.

[85] Y. Zhang, B. Han, and T. C. Ezeji, “Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation,” N. Biotechnol., vol. 29, no. 3, pp. 345–351, 2012, doi: 10.1016/j.nbt.2011.09.001.

[86] X. Zhou, X. Zhou, and R. R. Chen, “Gluconobacter oxydans ( ATCC 621H ) catalyzed oxidation of furfural for detoxification of furfural and bioproduction of furoic acid,” no. June, 2016, doi: 10.1002/jctb.5122.

[87] R. L. Kudahettige Nilsson, M. Holmgren, B. Madavi, R. T. Nilsson, and A. Sellstedt, “Adaptability of Trametes versicolor to the lignocellulosic inhibitors furfural, HMF, phenol and levulinic acid during ethanol fermentation,” Biomass and Bioenergy, vol. 90, pp. 95–100, 2016, doi: 10.1016/j.biombioe.2016.03.030.

[88] T. Modig, G. Lidén, and M. J. Taherzadeh, “Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase,” Biochem. J., vol. 363, no. 3, pp. 769–776, 2002, doi: 10.1042/bj3630769.

[89] A. Petersson et al., “A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance,” Yeast, vol. 23, no. 6, pp. 455–464, 2006, doi: 10.1002/yea.1370.

[90] O. Sepúlveda Delgado, Z. E. Suárez Aguilar, M. Patarroyo Mesa, S. Bautista Díaz, and L. C. Canaria Camargo, “Estudio del comportamiento e impacto de la climatología sobre el cultivo de la papa y del pasto en la región central de Boyacá empleando los sistemas dinámicos,” Ciencia En Desarrollo, vol. 6, no. 2, pp. 215–224, 2015.

[91] T. Gutiérrez, L. O. Ingram, and J. F. Preston, “Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1 - An enzyme important in the detoxification of furfural during ethanol production,” J. Biotechnol., vol. 121, no. 2, pp. 154–164, 2006, doi: 10.1016/j.jbiotec.2005.07.003.

[92] J. R. M. Almeida, T. Modig, A. Röder, G. Lidén, and M. F. Gorwa-Grauslund, “Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF),” Biotechnol. Biofuels, vol. 1, pp. 1–9, 2008, doi: 10.1186/1754-6834-1-12.

[93] Z. L. Liu and J. Moon, “A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion,” Gene, vol. 446, no. 1, pp. 1–10, 2009, doi: 10.1016/j.gene.2009.06.018.

[94] J. Moon and Z. L. Liu, “Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH,” Enzyme Microb. Technol., vol. 50, no. 2, pp. 115–120, 2012, doi: 10.1016/j.enzmictec.2011.10.007.

[95] X. Wang, Q. Gao, and J. Bao, “Transcriptional analysis of Amorphotheca resinae ZN1 on biological degradation of furfural and 5-hydroxymethylfurfural derived from lignocellulose pretreatment,” Biotechnol. Biofuels, pp. 1–13, 2015, doi: 10.1186/s13068-015-0323-y.

[96] C. Tejada, A. Herrera, and E. Ruiz, “Utilización de biosorbentes para la remoción de níquel y plomo en sistemas binarios,” Ciencia En Desarrollo, vol. 7, no. 1, pp. 31–36, 2016, doi: 10.19053/01217488.4228.

[97] Y. Tsuge, M. Kudou, H. Kawaguchi, J. Ishii, T. Hasunuma, and A. Kondo, “FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum,” Appl. Microbiol. Biotechnol., vol. 100, no. 6, pp. 2685–
2692, 2016, doi: 10.1007/s00253-015-7115-y.

[98] R. Boopathy and L. Daniels, “Isolation and Characterization of a Furfural Degrading Sulfate-Reducing Bacterium from an Anaerobic Digester,” Appl. Environ. Microbiol., vol. 58, no. 9, pp. 2874–2878, 1991, doi: 10.1128/aem.58.9.2874-2878.1992.

[99] K. L. Yee, L. E. Jansen, C. A. Lajoie, M. H. Penner, L. Morse, and C. J. Kelly, “Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase,” Enzyme Microb. Technol., vol. 108, no. July 2017, pp. 59–65, 2018, doi: 10.1016/j.enzmictec.2017.08.009.

Descargas

La descarga de datos todavía no está disponible.