Alúmina sulfonada: un catalizador adecuado para la valorización de componentes básicos de biomasa furfural a través de reacciones multicomponente.

Sulfonated alumina: A suitable catalyst for furfural biomass building-block valorization through multicomponent reactions

Contenido principal del artículo

Eliana Nope
D. Ruiz
Angel Sathicq
Gustavo Romanelli

Resumen

La alúmina sulfonada se sintetizó y ensayó por primera vez en la valorización del furfural mediante una reacción multicomponente para la preparación de un compuesto heterocíclico nitrogenado que contiene la subestructura de furano. Se obtuvieron diez heterociclos polisustituidos, pertenecientes a las dihidropirimidinonas (tiones) y 1,4-dihidropiridinas, con muy buenos rendimientos (70% - 85%) utilizando la metodología tándem y las condiciones de reacción verde. El catalizador se separó fácilmente del medio de reacción, dando un alto rendimiento en los estudios de reutilización. Se analizaron las métricas verdes para considerar la idoneidad de la reacción.

Palabras clave:

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Referencias (VER)

[1] H. X. Lin, Q. J. Zhao, B. Xu, and X. H. Wang, “A green synthesis of dihydropyrimidinones by Biginelli reaction over Nafion-H catalyst,” Chinese Chem. Lett., vol. 18, no. 5, p. 502–504, 2007, doi: https://doi.org/10.1016/j.cclet.2007.03.022.

[2] R. H. Vekariya and H. D. Patel, “Alumina sulfuric acid (ASA), tungstate sulfuric acid (TSA), molybdate sulfuric acid (MSA) and xanthan sulfuric acid (XSA) as solid and heterogeneous catalysts in green organic synthesis: A review,” Arkivoc, vol. 2015, no. 1, p. 70–96, 2015, doi: 10.3998/ark.5550190.p008.894.

[3] A. Rodriguez Montaña, M. H. Brijaldo, L. Rache, L. Silva, and L. Esteves, “Common Reactions of Furfural to scalable processes of Residual Biomass,” Cienc. en Desarro., vol. 11, no. 1, 2020, doi: https://doi.org/10.19053/01217488.v11.n1.2020.10973.

[4] T. J. J. Müller, “Multicomponent reactions,” Beilstein J. Org. Chem., vol. 7, p. 960–961, 2011, doi: 10.3762/bjoc.7.107.

[5] Â. de Fátima et al., “A mini-review on Biginelli adducts with notable pharmacological properties,” J. Adv. Res., vol. 6, no. 3, p. 363–373, May 2015, doi: 10.1016/j.jare.2014.10.006.

[6] A. M. Niwa et al., “Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells,” Naunyn. Schmiedebergs. Arch. Pharmacol., vol. 389, no. 6, p. 557—571, Jun. 2016, doi: 10.1007/s00210-016-1225-7.

[7] M. Matias, G. Campos, A. O. Santos, A. Falcão, S. Silvestre, and G. Alves, “Synthesis, in vitro evaluation and QSAR modelling of potential antitumoral 3,4-dihydropyrimidin-2-(1H)-thiones,” Arab. J. Chem., vol. 12, no. 8, p. 5086–5102, 2019, doi: https://doi.org/10.1016/j.arabjc.2016.12.007.

[8] K. S. Atwal et al., “Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents,” J. Med. Chem., vol. 34, no. 2, p. 806–811, Feb. 1991, doi: 10.1021/jm00106a048.

[9] H. Prokopcová et al., “Structure–Activity Relationships and Molecular Docking of Novel Dihydropyrimidine-Based Mitotic Eg5 Inhibitors,” ChemMedChem, vol. 5, no. 10, p. 1760–1769, 2010, doi: https://doi.org/10.1002/cmdc.201000252.

[10] M. K. Mishra, A. K. Gupta, and S. Negi, “Anti-Inflammatory Activity Of Some New Dihydropyrimidines Derivatives,” Int. J. Pharm. scieences Res., vol. 1, no. 8, p. 67–71, 2010.

[11] B. C. Raju et al., “Synthesis, structure-activity relationship of novel substituted 4H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents.,” Bioorg. Med. Chem. Lett., vol. 21, no. 10, p. 2855–2859, May 2011, doi: 10.1016/j.bmcl.2011.03.079.

[12] H. A. Stefani et al., “Dihydropyrimidin-(2H)-ones obtained by ultrasound irradiation: a new class of potential antioxidant agents.,” Eur. J. Med. Chem., vol. 41, no. 4, p. 513–518, Apr. 2006, doi: 10.1016/j.ejmech.2006.01.007.

[13] Z. R, F. A, A. MR, M. HR, S. M, and M.-A. K., “Inhibitory effect and structure-activity relationship of some Biginelli-type pyrimidines against HSV-1,” Med Chem Res, vol. 22, no. 3, p. 1270–1276, 2013.

[14] S. Chitra, D. Devanathan, and K. Pandiarajan, “Synthesis and in vitro microbiological evaluation of novel 4-aryl-5-isopropoxycarbonyl-6-methyl-3,4-dihydropyrimidinones,” Eur. J. Med. Chem., vol. 45, no. 1, p. 367–371, 2010, doi: https://doi.org/10.1016/j.ejmech.2009.09.018.

[15] Suresh and J. S. Sandhu, “Past, present and future of the Biginelli reaction: A critical perspective,” Arkivoc, vol. 2012, no. 1, p. 66–133, 2012, doi: 10.3998/ark.5550190.0013.103.

[16] S. L. Jain, V. V. D. N. Prasad, and B. Sain, “Alumina supported MoO3: An efficient and reusable heterogeneous catalyst for synthesis of 3,4-dihydropyridine-2(1H)-ones under solvent free conditions,” Catal. Commun., vol. 9, no. 4, p. 499–503, 2008, doi: 10.1016/j.catcom.2007.04.021.

[17] I. Cepanec, M. Litvić, M. Filipan-Litvić, and I. Grüngold, “Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism,” Tetrahedron, vol. 63, no. 48, p. 11822–11827, 2007, doi: 10.1016/j.tet.2007.09.045.

[18] H. Adibi, H. A. Samimi, and M. Beygzadeh, “Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols,” Catal. Commun., vol. 8, no. 12, p. 2119–2124, 2007, doi: https://doi.org/10.1016/j.catcom.2007.04.022.

[19] V. Polshettiwar and R. Varma, “Biginelli reaction in aqueous medium: a greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Lett., vol. 48, p. 7343–7346, 2007, doi: 10.1016/j.tetlet.2007.08.031.

[20] P. Salehi, M. Dabiri, M. A. Zolfigol, and M. A. Bodaghi Fard, “Silica sulfuric acid: an efficient and reusable catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Lett., vol. 44, no. 14, p. 2889–2891, 2003, doi: https://doi.org/10.1016/S0040-4039(03)00436-2.

[21] M. M. Heravi, F. Derikvand, and F. F. Bamoharram, “A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2 (1H)-one using 12-tungstophosphoric acid,” J. Mol. Catal. A Chem., vol. 242, no. 1, p. 173–175, 2005, doi: https://doi.org/10.1016/j.molcata.2005.08.009.

[22] M. Moosavifar, “An appropriate one-pot synthesis of dihydropyrimidinones catalyzed by heteropoly acid supported on zeolite: An efficient and reusable catalyst for the Biginelli reaction,” Comptes Rendus Chim., vol. 15, no. 5, p. 444–447, 2012, doi: https://doi.org/10.1016/j.crci.2011.11.015.

[23] E. Rafiee, S. Eavani, S. Rashidzadeh, and M. Joshaghani, “Silica supported 12-tungstophosphoric acid catalysts for synthesis of 1,4-dihydropyridines under solvent-free conditions,” Inorganica Chim. Acta, vol. 362, no. 10, p. 3555–3562, 2009, doi: 10.1016/j.ica.2009.03.049.

[24] S. Ko, M. N. V Sastry, C. Lin, and C.-F. Yao, “Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction,” Tetrahedron Lett., vol. 46, no. 34, p. 5771–5774, 2005, doi: https://doi.org/10.1016/j.tetlet.2005.05.148.

[25] C. Antonyraj and K. Srinivasan, “Hantzsch pyridine synthesis using hydrotalcites or hydrotalcite-like materials as solid base catalysts,” Appl. Catal. A-general - APPL CATAL A-GEN, vol. 338, p. 121–129, Apr. 2008, doi: 10.1016/j.apcata.2007.12.028.

[26] S. Rostamnia and K. Lamei, “Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA),” Chinese Chem. Lett., vol. 23, no. 8, p. 930–932, 2012, doi: 10.1016/j.cclet.2012.06.008.

[27] J.-L. Wang, B.-K. Liu, C. Yin, Q. Wu, and X.-F. Lin, “Candida antarctica lipase B-catalyzed the unprecedented three-component Hantzsch-type reaction of aldehyde with acetamide and 1,3-dicarbonyl compounds in non-aqueous solvent,” Tetrahedron, vol. 67, no. 14, p. 2689–2692, 2011, doi: 10.1016/j.tet.2011.01.045.

[28] H. XY and X. BW, “PEG-Promoted One-Pot Synthesis of 1,4-Dihydropyridine Derivatives Via Hantzsch Reaction in H2O,” J Kor Chem Soc, vol. 55, p. 313–316, 2011.

[29] R. Maggi, C. G. Piscopo, G. Sartori, L. Storaro, and E. Moretti, “Supported sulfonic acids: Metal-free catalysts for the oxidation of hydroquinones to benzoquinones with hydrogen peroxide,” Appl. Catal. A Gen., vol. 411–412, p. 146–152, 2012, doi: https://doi.org/10.1016/j.apcata.2011.10.032.

[30] K. RI, I. Ahmad, K. NH, A. SHR, K. Pathak, and J. RV, “Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes,” J. Catal., vol. 238, no. 1, p. 134–141, 2006, doi: 10.1016/j.jcat.2005.11.042.

[31] B. R. Prashantha Kumar, P. Masih, E. Karthikeyan, A. Bansal, Suja, and P. Vijayan, “Synthesis of novel Hantzsch dihydropyridines and Biginelli dihydropyrimidines of biological interest: a 3D-QSAR study on their cytotoxicity,” Med. Chem. Res., vol. 19, no. 4, p. 344–363, 2010, doi: 10.1007/s00044-009-9195-7.

[32] F. S. Falsone and C. O. Kappe, “The Biginelli dihydropyrimidone synthesis using polyphosphate ester as a mild and efficient cyclocondensation/dehydration reagent,” Arkivoc, vol. 2001, no. 2, p. 122–134, 2001, doi: 10.3998/ark.5550190.0002.214.

Citado por: