Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Celulosa sulfonada como catalizador para la conversión eficiente de ácido levulínico en levulinato de etilo

Resumen

Este estudio destaca el uso de ácido sulfúrico de celulosa como catalizador heterogéneo y reutilizable derivado de biomasa (Cortaderia Selloana) para sintetizar levulinato de etilo mediante esterificación catalítica de ácido levulínico con etanol. Se estudiaron los efectos de la temperatura, la carga del catalizador y la relación molar de etanol:ácido levulínico sobre el rendimiento de levulinato de etilo para optimizar la producción. Se logró un rendimiento del 95% a las 16 horas, 80 °C y una relación molar de 3:1 de etanol:ácido levulínico. Estos resultados demuestran que es factible obtener altos rendimientos de levulinato de etilo utilizando un catalizador derivado de biomasa.

Palabras clave

ácido sulfúrico de celulosa; levulinato de etilo; Esterificación del ácido levulínico


Referencias

  • R. Rinaldi, F. Schuth, "Design of solid catalysts for the conversion of biomass" Energy & Environmental Science vol. 2, pp. 610-626, 2009.
  • P. Drożyner, P. Rejmer, P. Starowicz, A. Klasa, K.A. Skibniewska, "Biomass as a renewable source of energy". Technical Sciences vol. 16(3), pp. 211-220, 2013.
  • M.L. Savaliya, B.Z. Dholakiya, "Chemical transformation of triglycerides of fatty acid of Pongamia pinnata seed to fatty acid methyl esters by microwave irradiation", Chemical Sciences Journal vol. 4, pp. 67, 2013,
  • D.J. Hayes, "An examination of biorefining processes, catalysts and challenges", Catalysis Today vol. 145, pp. 138-151, 2009.
  • J.J. Bozell, L. Moens, D.C. Elliott, Y. Wang, G.G. Neuenscwander, S.W. Fitzpatrick, "Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling" vol. 28, pp. 227-239, 2000.
  • J.C. Serrano-Ruiz, A. Pineda, A.M. Balu, R. Luque, J.M. Campelo, A.A. Romero, "Catalytic transformations of biomass-derived acids into advanced biofuels", Catalysis Today vol. 195, pp. 162-168, 2012.
  • F.M.A Geilen, E. Barthel, H. Andreas, M. Wolfgang, K. Jürgen, W.L. Leitner "Selective and Flexible Transformation of Biomass‐Derived Platform Chemicals by a Multifunctional Catalytic System", Angewandte Chemie International Edition vol. 49, pp. 5510-5514, 2010.
  • C.S.K. Lin, L.A. Pfaltzgraff, L. Herrero-Davila, E.B. Mubofu, S. Abderrahim, J.H. Clark, "Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective", Energy & Environmental Science vol. 6, pp. 426-464, 2013.
  • A. Corma, S. Iborra, A. Velty, "Chemical Routes for the Transformation of Biomass into Chemicals", Chemical Reviews vol. 107, pp. 2411-2502, 2007.
  • J.N. Chheda, G.W. Huber, J.A. Dumesic, "Liquid‐Phase Catalytic Processing of Biomass‐Derived Oxygenated Hydrocarbons to Fuels and Chemicals", Angewandte Chemie International Edition vol. 46, 7164-7183, 2007.
  • E. Christensen, A. Williams, S. Paul, S. Burton, R.L. McCormick, "Properties and Performance of Levulinate Esters as Diesel Blend Components", Energy & Fuels vol. 25, pp. 5422-5428, 2011.
  • A.G. Zavozin, N.E. Kravchenko, N.V. Ignat’ev, S.G. Zlotin, "Variation in the regioselectivity of levulinic acid bromination in ionic liquids", Tetrahedron Letters vol. 51, 545-547, 2010.
  • J. Hegner, K.C. Pereira, B. DeBoef, B.L. Lucht, "Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis", Tetrahedron Letters vol. 51, pp. 2356-2358, 2010.
  • D. Unlu, O. Ilgen, N.D. Hilmioglu, "Biodiesel additive ethyl levulinate synthesis by catalytic membrane: SO4−2/ZrO2 loaded hydroxyethyl cellulose", Chemical Engineering Journal vol. 302, pp. 260-268, 2016.
  • T. Lei, Z. Wang, Y. Li, Z. Li, X. He, J. Zhu, "Performance of a Diesel Engine with Ethyl Levulinate-Diesel Blends: A Study using Grey Relational Analysis", BioResources vol. 8(2), pp. 2696-2707, 2013.
  • G. Pasquale, P. Vázquez, G. Romanelli, G. Baronetti, "Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst", Catalysis Communications vol. 18, pp. 115-120, 2012.
  • F.D. Pileidis, M. Tabassum, S. Coutts, M-M. Titirici, "Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons", Chinese Journal of Catalysis vol. 35, 929-936, 2014.
  • F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, "Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs", Chemical Engineering Science vol. 124, pp. 52-60, 2015.
  • K.Y. Nandiwale, S.K. Yadava, V.V Bokade, "Production of octyl levulinate biolubricant over modified H-ZSM-5: Optimization by response surface methodology", Journal of Energy Chemistry vol. 23, pp. 535-541, 2014.
  • Y. Kuwahara, T. Fujitani, H. Yamashita, "Esterification of levulinic acid with ethanol over sulfated mesoporous zirconosilicates: Influences of the preparation conditions on the structural properties and catalytic performances", Catalysis Today vol. 237, pp. 18-28, 2014.
  • M. Popova, P. Shestakova, H. Lazarova, M. Dimitrov, D. Kovacheva, A. Szegedi, "Efficient solid acid catalysts based on sulfated tin oxides for liquid phase esterification of levulinic acid with ethanol", Applied Catalysis A: General vol. 560, pp. 119-131, 2018.
  • I. Ogino, Y. Suzuki, S.R. Mukai, "Esterification of levulinic acid with ethanol catalyzed by sulfonated carbon catalysts: Promotional effects of additional functional groups", Catalysis Today vol. 314, pp. 62-69, 2018.
  • D.R. Fernandes, A.S. Rocha, E.F. Mai, C.J.A. Mota, V. Teixeira da Silva, "Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts", Applied Catalysis A: General vol. 425-426, pp. 199-204, 2012.
  • M.A. Tejero, E. Ramírez, C. Fité, J. Tejero, F. Cunill, "Esterification of levulinic acid with butanol over ion exchange resins", Applied Catalysis A: General vol. 517, pp. 56-66, 2016.
  • D. Song, S. An, Y. Sun, Y. Guo, "Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes", Journal of Catalysis vol. 333, pp. 184-199, 2016.
  • S. Dharne, V.V. Bokade, "Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay", Journal of Natural Gas Chemistry vol. 20, pp. 18-24, 2011.
  • Y. Kuwahara, W. Kaburagi, K. Nemoto, T. Fujitani, "Esterification of levulinic acid with ethanol over sulfated Si-doped ZrO2 solid acid catalyst: Study of the structure–activity relationships" Applied Catalysis A: General vol. 476, pp. 186-196, 2014.
  • J.A. Melero, G. Morales, J. Iglesias, M. Paniagua, B. Hernández, S. Penedo, "Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas", Applied Catalysis A: General vol. 466, pp. 116-122, 2013.
  • A. Sai, S. Daiyu, L. Bo, Y. Xia, G. Yi‐Hang, "Morphology Tailoring of Sulfonic Acid Functionalized Organosilica Nanohybrids for the Synthesis of Biomass‐Derived Alkyl Levulinates", Chemistry – A European Journal vol. 21, pp. 10786-10798, 2015.
  • B.L. Oliveira, V. Teixeira da Silva, "Sulfonated carbon nanotubes as catalysts for the conversion of levulinic acid into ethyl levulinate", Catalysis Today vol. 234, pp. 257-263, 2014.
  • V.L. Budarin, J.H. Clark, R. Luque, D.J. Macquarrie, "Versatile mesoporous carbonaceous materials for acid catalysis", Chemical Communications vol. 2007, pp. 634-636, 2007.
  • R. Breslow, "Biomimetic control of chemical selectivity", Accounts of Chemical Research vol. 13, pp. 170-177, 1980.
  • W-L. Wei, H-Y. Zhu, C-L- Zhao, M-Y. Huang, Y-Y. Jiang, "Asymmetric hydrogenation of furfuryl alcohol catalyzed by a biopolymer–metal complex, silica-supported alginic acid–amino acid–Pt complex", Reactive and Functional Polymers vol. 59, pp. 33-39, 2004.
  • C. Crecchio, P. Ruggiero, M.D. Pizzigallo, "Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds", Biotechnology and Bioengineering vol. 48, pp. 585-591, 1995.
  • K. Huang, L. Xue, Y-C. Hu, M-Y. Huang, Y-Y. Jiang, "Catalytic behaviors of silica-supported starch–polysulfosiloxane–Pt complexes in asymmetric hydrogenation of 4-methyl-2-pentanone", Reactive and Functional Polymers vol. 50, pp. 199-203, 2002.
  • E. Guibal, "Heterogeneous catalysis on chitosan-based materials: a review", Progress in Polymer Science vol. 30, pp. 71-109, 2005.
  • D. Klemm, B. Heublein, H.P. Fink, A. Bohn, "Cellulose: Fascinating Biopolymer and Sustainable Raw Material", Angewandte Chemie International Edition vol. 44, pp. 3358-3393, 2005.
  • A. Shaabani, A. Maleki, "Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the one-pot three-component synthesis of α-amino nitriles", Applied Catalysis A: General vol. 331, pp. 149-151, 2007.
  • A. Shaabani, A. Maleki, J. Moghimi Rad, E. Soleimani, "Cellulose Sulfuric Acid Catalyzed One-Pot Three-Component Synthesis of Imidazoazines", Chemical and Pharmaceutical Bulletin vol. 55, pp. 957-958, 2007.
  • J. Venu Madhav, Y. Thirupathi Reddy, P. Narsimha Reddy, M. Nikhil Reddy, S. Kuarm, P.A. Crooks PA, "Cellulose sulfuric acid: An efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions" Journal of Molecular Catalysis A: Chemical vol. 304, 85-87, 2009.
  • A. Shaabani, A. Rahmati, Z. Badri, "Sulfonated cellulose and starch: New biodegradable and renewable solid acid catalysts for efficient synthesis of quinolines", Catalysis Communications vol. 9, pp. 13-16, 2008.
  • J. Safari, S.H. Banitaba, S.D. Khalili, "Cellulose sulfuric acid catalyzed multicomponent reaction for efficient synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction in aqueous media", Journal of Molecular Catalysis A: Chemical vol. 335, pp. 46-50, 2011.
  • P.N. Reddy, Y.T. Reddy, M.N. Reddy, B. Rajitha, P.A. Crooks, "Cellulose Sulfuric Acid: An Efficient Biodegradable and Recyclable Solid Acid Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones", Synthetic Communications vol. 39, pp. 1257-1263, 2009.
  • M.L. Savaliya, B.Z. Dholakiya, "Cellulose Sulfuric Acid Catalyzed Esterification of Biodiesel Derived Raw Glycerol to Medium Chain Triglyceride: The Dual Advantage", Catalysis Letters vol. 144, pp. 1399-1406, 2014.
  • A. Jordá-Vilaplana, A. Carbonell-Verdú, M.D. Samper, A. Pop, D. Garcia-Sanoguera, "Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers", Composites Science and Technology vol. 145, pp. 1-9, 2017.
  • B. Liu, Z. Zhang, K. Huang, "Cellulose sulfuric acid as a bio-supported and recyclable solid acid catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose", Cellulose vol. 20, pp. 2081-2089, 2013.
  • C-K. Shu, B.M. Lawrence, "Formation of 4-Alkoxy-.gamma.-valerolactones from Levulinic Acid and Alcohols during Storage at Room Temperature", Journal of Agricultural and Food Chemistry vol. 43, pp. 782-784, 1995.
  • R. Aafaqi, A.R. Mohamed, S. Bhatia, "Kinetics of esterification of palmitic acid with isopropanol using p-toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts", Journal of Chemical Technology & Biotechnology vol. 79, pp. 1127-1134, 2004.
  • E. Siva Sankar, V. Mohan, M. Suresh, G. Saidulu, B. David Raju, K.S. Rama Rao , "Vapor phase esterification of levulinic acid over ZrO2/SBA-15 catalyst", Catalysis Communications vol. 75, pp.1-5, 2016.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

<< < 1 2 3 4 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.