Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Transiciones de Fase Inducidas por Presión en los Compuestos GaN, InN y AlN / Phase Transitions Induced by Pressure in the Compounds GaN, InN and AlN

Resumen

Realizamos un estudio de las transiciones de fase estructurales de los nitruros III-V GaN, InN y AlN empleando el método de ondas planas aumentadas y linealizadas en la formulación de potencial completo (FP:LAPW) dentro del marco de la teoría del funcional de la densidad (DFT). Para el potencial de correlación- intercambio se utilizó la aproximación de gradiente generalizado (GGA) con la parametrización de Perdew-Burke-Ernzerhof (PBE). Reportamos valores de los parámetros de red a, c/a y u, volumen, energía y módulo de volumen, presiones de transición y cambio de volumen en las transiciones de fase wurtzita–rocksalt (WZ–RS) y wurtzita–zincblenda (WZ–ZB). Nuestros resultados muestran un buen acuerdo con otros reportes experimentales y teóricos e indican que la fase más estable es la WZ siguiéndole la ZB y RS, y que las transiciones de fase estudiadas corresponden a transiciones de fase de primer orden.

 

 

Palabras clave

Transiciones de fase, nitruros III-V, Teoría del funcional densidad, Aproximación de gradiente generalizado, presión de transición, Zincblenda, Wurtzita, Rocksalt.

PDF

Archivo(s) complementario(s)

Transferencia Derechos de Autor Sugerencia_Evaluadores

Biografía del autor/a

Diego Alejandro Rasero Causil

Magister en Ciencias Físicas, Facultad de Ciencias Exactas y Naturales, Universidad Surcolombiana, Neiva, Huila-Colombia

Tatiana Sofia Miranda Saenz

Físico, Departamento de Física y Electrónica, Universidad de Córdoba, Montería, Córdoba-Colombia

César Ortega López

Doctor en Ciencias Fisicas, Departamento de Física y Electrónica, Universidad de Córdoba, Montería, Córdoba-Colombia.


Citas

  1. I. Gorczyca, N. E. Christensen, P. Perlin, I. Grzegory, J. Jun and M. Bockowski, “High pressure phase transition in aluminium nitri-
  2. de”, Solid State Commun, vol. 79, pp. 1033-1034, September 1991. DOI: https://doi.org/10.1016/0038-1098(91)90004-F
  3. P. E. Van Camp, V. E. Van Doren and J. T. Devreese, “High-pressure properties of wurtzite- and rocksalt-type aluminum nitride”, Phys. Rev. B, vol. 44, pp. 9056-9059, October 1991. DOI: https://doi.org/10.1103/PhysRevB.44.9056
  4. C. Y. Yeh, Z. W. Lu, S. Froyen and A. Zunger, “Zinc-blende-wurtzite polytypism in semiconductors”, Phys. Rev. B, vol. 46, pp. 10086-10097, October 1992.
  5. M. Ueno, A. Onodera, O. Shimomura and K. Takemura, “X-ray observation of the structural phase transition of aluminum nitride under high pressure”, Phys. Rev. B, vol. 45, pp. 10123-10126, May 1992.
  6. A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN”, Phys. Rev. B, vol. 51, pp. 7866-7869, March 1995. DOI: https://doi.org/10.1103/PhysRevB.51.7866
  7. C. Ortega López, W. López, J. A. Rodríguez, “Ruthenium adsorption and diffusion on the GaN(0001) surface”, Applied Surface Science, vol. 255, pp. 3837-3842, January 2009. DOI: https://doi.org/10.1016/j.apsusc.2008.10.072
  8. R. González, W. López, M. G. Moreno-Armenta and J. A. Rodríguez, “Vanadium adsorption and incorporation at the GaN(0001) surface: A first-principles study”, Phys. Rev. B, vol. 81, pp. 195407-1-195407-8, May 2010. DOI: https://doi.org/10.1103/PhysRevB.81.195407
  9. R. González, W. López, C. Ortega López, M. G. Moreno-Armenta and J. A. Rodríguez, “Theoretical study of Ni adsorption on the GaN(0001) surface”, Applied Surface Science, vol. 256, pp. 6495-6498, September 2010. DOI: https://doi.org/10.1016/j.apsusc.2010.04.078
  10. V. Yu Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, J. H. Harima, A. V. Mudryyi, J. Aderhold, O. Semchinova and J. Graul,“Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap”, Phys. Stat. Sol. (b), vol. 229, pp. R1-R3, February 2002. DOI: https://doi.org/10.1002/1521-3951(200202)229:3<R1::AID-PSSB99991>3.0.CO;2-O
  11. J. Wu, W. Walukiewicz, K. J. Yu III, E. Haller, H. Lu, W. Schaff, Y. Saito and Y. Nanishi, “Unusual properties of the fundamental band gap of InN”, Appl. Phys. Lett., vol 80, pp. 3967-3969, May 2002. DOI: https://doi.org/10.1063/1.1482786
  12. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett., vol 81, pp. 1246-1248, August 2002. DOI: https://doi.org/10.1063/1.1499753
  13. S. C. Jain, M. Willander, J. Narayan and R. van Overstraeten, “III-nitrides: Growth, characterization, and properties”, J. Appl. Phys., vol. 87, pp. 965-1006, February 2000. DOI: https://doi.org/10.1063/1.371971
  14. A. Bhuiyan, A. Hashimoto and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties”, Appl. Phys., vol. 94, pp. 2779-2808, September 2003. DOI: https://doi.org/10.1063/1.1595135
  15. S. Strite and H. Morkoç, “GaN, AlN, and InN: A review”, J. Vac. Sci. & Technol. B, vol. 10, pp. 1237-1266, July 1992. DOI: https://doi.org/10.1116/1.585897
  16. F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices”, Nature (London), vol. 386, pp. 351-359, March 1997. DOI: https://doi.org/10.1038/386351a0
  17. J. W. Orton and C. T. Foxon, “Group III nitride semiconductors for short wavelength light-emitting devices”, Rep. Prog. Phys., vol. 61, pp. 1-75, January 1998. DOI: https://doi.org/10.1088/0034-4885/61/1/001
  18. I. Vurgaftman, J. Meyer and L. R. RamMohan, “Band parameters for III-V compound semiconductors and their alloys ”, J. Appl. Phys., vol. 89, pp. 5815-5875, June 2001. DOI: https://doi.org/10.1063/1.1368156
  19. I. Vurgaftman and J. Meyer, “Band parameters for nitrogen-containing semiconductors”, J. Appl. Phys., vol. 94, pp. 3675-3696, September 2003. DOI: https://doi.org/10.1063/1.1600519
  20. J. H. Edgar (Ed.), “Properties of Group-III Nitrides”, EMIS Data-reviews Series, IEE, London, 1994.
  21. E. López, J. Arriaga and D. Olguín, “Cálculo de primeros principios de las propiedades electrónicas de nitruros del grupo III-V”, Superficies y vacío, vol. 17, pp. 21-26, Marzo 2004.
  22. P. Jonnard, N. Capron, F. Semond, J. Massies, E. Martinez-Guerrero and H. Mariette, “Electronic structure of wurtzite and zinc-blende AlN”, Eur. Phys. J. B, vol. 42, pp. 351-359, December 2004. DOI: https://doi.org/10.1140/epjb/e2004-00390-7
  23. M. P. Thompson, G. W. Auner, T. S. Zheleva, K. A. Jones, S. J. Simko and J. N. Hilfiker, “Deposition factors and band gap of zinc-blende AlN”, J. Appl. Phys., vol. 89, pp. 3331-3336, March 2001. DOI: https://doi.org/10.1063/1.1346999
  24. F. Litimein, B. Bouhafs, Z. Dridi and P. Ruterana, “The electronic structure of wurtzite and zincblende AlN: an ab initio comparative study”, New Journal of Physics, vol. 4, pp. 64.1-64.12, August 2002. DOI: https://doi.org/10.1088/1367-2630/4/1/364
  25. J. H. Edgar (Ed.), “Electronic Materials Information Service”, EMIS Data-reviews Series, IEE, London 1994.
  26. S. Erkoç, O. B. Malcio ̆glu and E. Ta ̧sci, “Structural and electronic properties of single-wall GaN nanotubes: semi-empirical SCF-MO calculations”, J. Mol. Struct. (THEOCHEM), vol. 674, pp. 1-5, April 2004. DOI: https://doi.org/10.1016/j.theochem.2003.12.020
  27. T. Pradeep and C. N. R. Rao, “Electronic structures of electron donor-acceptor complexes: results from ultraviolet photoelectron spectroscopy and molecular orbital calculations”, J. Mol. Struct. (THEOCHEM), vol. 200, pp. 339-352, October 1989. DOI: https://doi.org/10.1016/0166-1280(89)85064-X
  28. X. Hu, J. Li, Y. Zhang and Y. Li, “Time dependent density functional theory study on optical properties of GaN doped with alkaline-earth atom”, J. Mol. Struct. (THEOCHEM), vol. 900, pp. 27-32, April 2009. DOI: https://doi.org/10.1016/j.theochem.2008.12.016
  29. A. Mahmood, L. Enrique Sansores and S. Muhl, “Band Structure and Bulk Modulus of GaN”, Superficies y vacío, vol. 9, pp. 259-262, Diciembre 1999.
  30. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz, “WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties”, Vienna University of Technology, 2009.
  31. Chin-Yu Yeh, Z. W. Lu, S. Froyen and Alex Zunger, “Zinc-blende–wurtzite polytypism in semiconductors”, Phys. Rev. B, vol. 46, pp. 10086-10097, October 1992. DOI: https://doi.org/10.1103/PhysRevB.46.10086
  32. P. Lawaetz, “Stability of the Wurtzite Structure”, Phys. Rev. B, vol. 5, pp.4039-4045, May 1972. DOI: https://doi.org/10.1103/PhysRevB.5.4039
  33. J. Perdew, and K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., vol. 77, pp. 3865-3868, October 1996. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
  34. H. J. Monkhorst and A. T. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, vol. 13, pp. 5188-5192, June 1976. DOI: https://doi.org/10.1103/PhysRevB.13.5188
  35. F. Murnaghan, “The Compressibility of Media under Extreme Pressures”, Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, September 1944. DOI: https://doi.org/10.1073/pnas.30.9.244
  36. O. Arbouche, B. Belgoumene, B. Soudini and M. Driz, “First principles study of the relative stability and the electronic properties of GaN”, Computational Materials Science, vol. 47, pp. 432-438, December 2009. DOI: https://doi.org/10.1016/j.commatsci.2009.09.007
  37. D. S. Sholl and J. Steckel, “Density Functional Theory-A Practical Introduction”, John Wiley & Sons, Inc., New Jersey 2009. DOI: https://doi.org/10.1002/9780470447710
  38. J. Alberto Nieto, D. Alejandro Rasero and C. Ortega López, “Adsorción e incorporación de Cu en la superficie GaN(0001)”, Rev. Mex. Fis., vol. 58, pp. 451-458, Diciembre 2012.
  39. C. Stampfl, and C. G. Van de Walle, “Density functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation”, Phys. Rev. B, vol. 59, pp. 5521-5535, February 1999. DOI: https://doi.org/10.1103/PhysRevB.59.5521
  40. A. Zoroddu, F. Bernardini, P. Ruggerone and V. Fiorentini, “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density functional theory”, Phys. Rev. B, vol. 64, pp. 045208-045213, July 2001. DOI: https://doi.org/10.1103/PhysRevB.64.045208
  41. V. Timon, S. Brand, S. J. Clark and R. A. Abram, “Theoretical adlayer surface morphology of wurtzite 2×2 reconstructions of the GaN(0001) surface”, J. Phys. Condens. Matter., vol. 17, pp. 17-26, January 2005. DOI: https://doi.org/10.1088/0953-8984/17/1/002
  42. M. Abu-Jafar, A. I. Al-Sharif and A. Qteish, “FP-LAPW and pseudopotential calculations of the structural phase transformations of GaN under high-pressure”, Solid State Communications, vol. 116, pp. 389-393, October 2000. DOI: https://doi.org/10.1016/S0038-1098(00)00336-7
  43. S. Saib and N. Bouarissa, “Structural phase transformations of GaN and InN under high pressure”, Physica B, vol. 387, pp. 377-382, January 2007. DOI: https://doi.org/10.1016/j.physb.2006.04.023
  44. F. Saad Saoud, J. C. Plenet, L. Louail and D. Maouche, “Mechanism of the phase transition in GaN under pressure up to 100 GPa”, Computational and theoretical Chemistry, vol. 964, pp. 65-71, March 2011. DOI: https://doi.org/10.1016/j.comptc.2010.11.037
  45. Lai-Yu Lu, Xiang-Rong Chen, Yan Cheng and Jian-Zhou Zhao, “Transition phase and thermodynamic properties of GaN via first-principles calculations”, Solid State Communications, vol. 136, pp. 152-156, October 2005. DOI: https://doi.org/10.1016/j.ssc.2005.07.011
  46. A. Achour, S. Louhibi-Falsa and F. Mana, “Theoretical investigation of GaN”, Physics Procedia, vol. 55, pp. 17-23, 2014. DOI: https://doi.org/10.1016/j.phpro.2014.07.003
  47. F. Saad-Saoud, J. C. Plenet and M. Henini, “Structural and elastic stabilities of InN in both B4 and B1 phases under high pressure using density-functional perturbation theory”, Journal of Alloys and Compounds, vol. 650, pp. 450-457, August 2015. DOI: https://doi.org/10.1016/j.jallcom.2015.07.287
  48. M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, K. Pakula, J. M. Baranowski, C. T. Foxon and T. S. Cheng, “Lattice parameters of gallium nitride”, Appl. Phys. Lett., vol. 69, pp. 73-75, July 1996. DOI: https://doi.org/10.1063/1.118123
  49. N. E. Christensen, “High Pressure in Semiconductors Physics”, Academic Press, New York 1997.
  50. K. Kim, W. R. L. Lambrecht and B. Segall, “Elastic constant and related properties of tetrahedrally bonded BN, AlN, GaN, and InN”, Phys. Rev. B, vol. 53, pp. 16310-16326, June 1996. DOI: https://doi.org/10.1103/PhysRevB.53.16310
  51. P. Perlin, C. Jauberthie-Carillon, J. P. Lite, A. San Miguel, I. Grzegory and A. Polin, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure”, Phys. Rev. B, vol. 45, pp. 83-89, January 1992. DOI: https://doi.org/10.1103/PhysRevB.45.83
  52. I. Petrov, E. Mojab, R. C. Powell, J. E. Greene, L. Hultman and J. E. Sundgren, “Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction”, Appl. Phys. Lett., vol. 60, pp. 2491-2493, May 1992. DOI: https://doi.org/10.1063/1.106943
  53. T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas, R. J. Graham and J. Scanlon, “Epitaxial growth of zinc-blende and wurtzite gallium nitride thin films on (001) silicon”, Appl. Phys. Lett., vol. 59, pp. 944-946, August 1991. DOI: https://doi.org/10.1063/1.106309
  54. H. Xia, Q. Xia and A. L. Ruoff, “Highpressure structure of gallium nitride:Wurtziteto- rocksalt phase transition”, Phys. Rev. B, vol. 47, pp. 12925-12928, May 1993. DOI: https://doi.org/10.1103/PhysRevB.47.12925
  55. M. J. Paisley, Z. Sitar, J. B. Posthill and R. F. Davis, “Growth of cubic phase gallium nitride by modified molecular?beam epitaxy”, J. Vac. Sci. Technol. A, vol. 7 pp. 701-705, May 1989. DOI: https://doi.org/10.1116/1.575869
  56. J. H. Edgar, “Prospects for device implementation of wide band gap semiconductors”, J. Mater. Res., vol. 7, pp. 235-252, June 1992. DOI: https://doi.org/10.1557/JMR.1992.0235
  57. B. Paulus, F. H. Shi and H. Stoll, “A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III-V nitrides”, J. Phys. Condens. Matter, vol. 9, pp. 2745-2758, March 1997. DOI: https://doi.org/10.1088/0953-8984/9/13/012
  58. W. Paszkowicz, J. Adamczyk, S. Krukowski, M. Leszczy´nski, S. Porowski, J. A. Sokolowski, M. Michalec and W. Lasocha, “Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium”, Philos. Mag. A, vol. 79, pp. 1145-1154, August 1999. DOI: https://doi.org/10.1080/01418619908210352
  59. H. Schulz, and K. H. Thiemann, “Crystal structure refinement of AlN and GaN”, Solid State Commun., vol. 23, pp. 815-819, September 1977. DOI: https://doi.org/10.1016/0038-1098(77)90959-0
  60. M. Ueno, A. Onodera, O. Shimomura and K. Takemura, “X-ray observation of the structural phase transition of aluminum nitride under high pressure”, Phys. Rev. B, vol. 45, pp. 10123(R)-10126(R), May 1992. DOI: https://doi.org/10.1103/PhysRevB.45.10123
  61. R. Miotto, G. P. Srivastava and A. C. Ferraz, “First-principles pseudopotential study of GaN and BN (110) surfaces”, Surface Science, vol. 426, pp. 75-82, May 1999. DOI: https://doi.org/10.1016/S0039-6028(99)00282-4
  62. S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura and K. Takemura, “Equation of state of the rocksalt phase of III-V nitrides to 72 GPa or higher”, J. Phys. Chem Solids, vol. 58, pp. 2093-2099, December 1997. DOI: https://doi.org/10.1016/S0022-3697(97)00150-9
  63. Hannen Yousef Saeed Shalash, “FP-LAPW Study of Phase Changes in AN (A=Al, In, and B) Under High Pressure”, Master’s Thesis, An-Najah National University, Nablus, Palestine, 2009.
  64. M. Durandurdu, “Pressure-induced phase transition of zinc-blende AlN: An ab initio molecular dynamics study”, J. Phys. Chem. Solids, vol. 69, pp. 2894-2897, , November 2008. DOI: https://doi.org/10.1016/j.jpcs.2008.08.007
  65. N. Farrer and L. Bellaiche, “Properties of hexagonal ScN versus wurtzite GaN and InN”, Phys. Rev. B., vol. 66, pp. 201203-1-201203-4, November 2002. DOI: https://doi.org/10.1103/PhysRevB.66.201203
  66. S. Q. Wang and H. Q. Ye, “A plane-wave pseudopotential study on III-V zinc-blende and wurtzite semiconductors under pressure”, J. Phys.: Condens. Matter., vol. 14, pp. 9579-9587, October 2002. DOI: https://doi.org/10.1088/0953-8984/14/41/313
  67. Saaj Steel Corporation, “Case Hardening Steel”, url http://www.indiamart.com/saajsteel-corporation/mild-steel-flats.html#casehardening-steel-grade-c1015, Accedido 27-01-2015.
  68. A.L.I.V.A. Gubanov and V.P. Zhukov, “Electronic Structure of Refractory Carbides and Nitrides”, Cambridge University Press, 1994. DOI: https://doi.org/10.1017/CBO9780511629037
  69. J. J. Pouch and S. A. Alterovitz (eds.), “Synthesis and Properties of Boron Nitride”, Trans. Tech. Publications, Aedermannsdorf, 2009.
  70. T. K. Maurya, S. Kumar and S. Auluck, “Abinitio study of electronic and optical properties of InN in wurtzite and cubic phases”, Optics Communications, vol. 283, pp. 4655- 4661, December 2010. DOI: https://doi.org/10.1016/j.optcom.2010.07.011
  71. J. Schörmann, D. J. As, K. Lischka, P. Schley, R. Goldhahn, S. F. Li,W. Löffler, M. Hetterich and H. Kalt, “ Molecular beam epitaxy of phase pure cubic InN”, Appl. Phys. Lett., vol. 89, pp. 261903-xx, December 2006. DOI: https://doi.org/10.1063/1.2422913
  72. M. Ueno, M. Yoshida, A. Onodera, O. Shimomura and K. Takemura, “Stability of the wurtzite-type structure under high pressure: GaN and InN”, Phys. Rev. B, vol. 49, pp. 14- 21, January 1994. DOI: https://doi.org/10.1103/PhysRevB.49.14
  73. J. Serrano, A. Rubio, E. Hernández, A. Muñoz and A. Mujica, “Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures”, Phys. Rev. B, vol. 62, pp. 16612-16623, December 2000. DOI: https://doi.org/10.1103/PhysRevB.62.16612
  74. A. Muñoz and K. Kunc, “Structure and static properties of indium nitride at low and moderate pressures”, J. Phys.: Conddens. Matter., vol. 5, pp. 6015-6022, August 1993. DOI: https://doi.org/10.1088/0953-8984/5/33/010
  75. A. Muñoz and K. Kunc, “New phases and physical properties of the semiconducting nitrides: AlN, GaN, InN”, Comp. Mater. Sci., vol. 2, pp. 400-412, March 1994. DOI: https://doi.org/10.1016/0927-0256(94)90124-4
  76. F. Peng, Dong Chen, Hongzhi Fu and Xinlu Cheng, “The phase transition and the elastic and thermodynamic properties of AlN: First principles”, Physica B, vol. 403, pp. 4259-4263, December 2008. DOI: https://doi.org/10.1016/j.physb.2008.09.013
  77. M. Durandurdu, “Pressure-induced phase transition in AlN: An ab initio molecular dynamics study”, Journal of Alloys and Compounds, vol. 480, pp. 917-921, July 2009. DOI: https://doi.org/10.1016/j.jallcom.2009.02.060
  78. Zhao-Yong Jiao Shu-Hong Ma and Ji-Fei Yang, “A comparison of the electronic and optical properties of zinc-blende, rocksalt and wurtzite AlN: A DFT study”, Solid States Sciences, vol. 13, pp. 31-336, February 2011. DOI: https://doi.org/10.1016/j.solidstatesciences.2010.11.030
  79. U. P. Verma and P. S. Bisht, “Ab-initio study of AlN in zinc-blende and rock-salt phases”, Solid States Sciences, vol. 12, pp. 665-669, May 2010. DOI: https://doi.org/10.1016/j.solidstatesciences.2008.12.002
  80. A. I. Al-Sharif, “Structural phase transformation of GaN under high-pressure: an exact exchange study”, Solid State Communications, vol. 135, pp. 515-518, August 2005. DOI: https://doi.org/10.1016/j.ssc.2005.05.032
  81. M. P. Halshal, P. Harmer, P. J. Parbrook and S. J. Henley, “Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN”, Phys. Rev. B, vol. 69, pp. 235207-1-235207-5, June 2004. DOI: https://doi.org/10.1103/PhysRevB.69.235207
  82. G. Y. Gao, K. L. Yao, Z. L. Liu, Y. L. Li, Y. C. Li and Q. M. Liu, “Ab initio pseudopotential studies of the pressure dependences of structural, electronic and optical properties for GaN”, Solid State Communications, vol. 138, pp. 494-497, June 2006. DOI: https://doi.org/10.1016/j.ssc.2006.04.028
  83. Man-Yi Duan, Lin He, Ming Xu1, Ming-Yao Xu, Shuyan Xu and Kostya (Ken) Ostrikov, “Structural, electronic, and optical properties of wurtzite and rocksalt InN under pressure”, Phys. Rev. B, vol. 81, pp. 033102-1-033102-4, January 2010. DOI: https://doi.org/10.1103/PhysRevB.81.033102
  84. H. Xia, Q. Xia and A. L. Ruoff, “New crystal structure of Indium Nitride: a pressureinduced rocksalt phase”, Mod. Phys. Lett. B, vol. 8, pp. 345-350, February 1994. DOI: https://doi.org/10.1142/S0217984994000352
  85. S. Goumri-Said, M. B. Kanoun, A. E. Merad, G. Merad and H. Aourag, “Prediction of structural and thermodynamic properties of zinc-blende AlN: molecular dynamics simulation”, Chem. Phys., vol. 302, pp. 135-141, July 2004. DOI: https://doi.org/10.1016/j.chemphys.2004.03.030
  86. H. Xia, Q. Xia and A. L. Ruoff, “Pressureinduced rocksalt phase of aluminum nitride: A metastable structure at ambient condition”, J. Appl. Phys., vol. 73, pp. 8198-8200, June 1993. DOI: https://doi.org/10.1063/1.353435
  87. P. Perlin, A. Polian, J. P. Itie, I. Grzegory, E. LitwinStaszevska and T. Suski, “Physical properties of GaN and AlN under pressures up to 0.5 Mbar”, Physica B, vol. 185, pp. 426-427, April 1993. DOI: https://doi.org/10.1016/B978-0-444-81573-6.50068-2
  88. M. Ueno, M. Yoshida, A. Onodera, O. Shimomura and K. Takemura, “Structural Phase Transition of III-V Nitrides under High Pressure”, Jpn. J. Appl. Phys., vol. 32, pp. 42-44, Supplement 32-1 1993. DOI: https://doi.org/10.7567/JJAPS.32S1.42
  89. L. E. Reichl, “A Modem Course in Statistical Physics”, 2nd Edition, John Wiley & Sons, Inc., United States of America 1998.
  90. P. Papon, J. Leblond and P. H. E. Meijer, “The Physics of Phase Transitions: Concepts and Applications”, Second Revised Edition, Springer-Verlag New York 2006.

Descargas

Los datos de descargas todavía no están disponibles.

Artículos similares

1 2 3 4 5 6 7 > >> 

También puede {advancedSearchLink} para este artículo.