Estimación del cardinal del espectro maximal de un producto infinito de cuerpos
Resumen
En este artículo presentamos propiedades generales de un producto de anillos conmutativos con unidad. Caracterizamos el espectro primo y maximal de una suma de anillos y probamos que el espectro de un producto de cuerpos es T1, o equivalentemente, que es Hausdorff. Por último, estimamos el cardinal del espectro maximal de un producto de cuerpos.Palabras clave
localización, producto directo de anillos, espectro primo y maximal
Biografía del autor/a
Claudia Granados Pinzón
Doctora en Matemáticas Universidad de Valladolid (España)
Profesora Asociada
Escuela de Matemàticas
Wilson Olaya León
Doctor en Matemáticas
Profesor Titular
Escuela de Matemàticas
Sofía Pinzón Durán
Doctora en Matemáticas
Profesora Titular
Escuela de Matemàticas
Citas
[1] P. Abellanas, Geometría Básica. Madrid: Editorial Romo S. L., 1969. 2
[2] F. Anderson and K. Fuller, Rings and Categories of Modules, Second Edition. New York: Springer-Verlag, 1992. 2, 3, 7
[3] M. Arapovic, “Characterizations of the 0-dimensional rings”, Glasnik Matematicki,vol. 18, no. 38, pp. 39-46, 1983. 7
[4] M.F. Atiyah y I.G. Macdonald, Introducción al álgebra conmutativa. Barcelona: Editorial Reverté S. A., 1980. 4, 7
[5] N. Bourbaki, Commutative Algebra, Cap 1-7. Berlin Heidelberg: Springer-Verlag, 1989. 7
[6] P. Clark, Commutative Algebra. Giorgia: University of Giorgia, 2015. 2
[7] D. Eisenbud, Commutative Algebra, with a view toward Algebraic Geometry. New York: Springer-Verlag, 1995. 7
[8] J. Elizondo, Anillos, ideales y espectro pri-mo. México: Universidad Nacional Autóno-ma de México. Disponible en: http://www.math.unam.mx/javier/caps1-2-3. pdf 4
[9] R. Gilmer and W. Heinzer, “Products of commutative rings and zero-dimensionality”, Trans. Amer. Math. Soc., vol. 331, pp. 663-680, 1992. 2, 7
[10] C. Granados-Pinzón, “Álgebras finitas sobre un cuerpo. La recta proyectiva”, Tesis doctoral, Dep. análisis mat., álgebra, geometría y topología, Universidad de Valladolid, Valladolid, 2015. 2
[11] C. Granados-Pinzón y W. Olaya-León, “K−álgebras finitas conmutativas con unidad”, Ingeniería y Ciencia, vol. 12, no. 24, pp. 31-49, 2016. 2
[12]E. Hartmann, Planar Circle Geometries: an introduction to Moebius-, Laguerre- and Minkowski-planes, Darmstadt University of Technology, 2004. 2
[13] H. Havlicek and K. List, “A three-Dimen-sional Laguerre geometry and its visualiza-t ion”, In proceedinhs-Dresden Symposium geometry: constructive and kinematic. Institut für geometrie TU Dresden, Dresden pp. 122-129, 2003. 2
[14] T. Jech, Set theory, The third millenium edi-tions, revised and expanded, Springer Verlag, 2003. 9
[15] R. Levy, P. Loustaunau and J. Shapiro, “The prime spectrum of an infinite product of copies of Z”, Fund. Math., vol. 138, pp. 115-164, 1991. 2, 7
[16] O. Lezama, Cuadernos de Álgebra, No. 10: Geometría algebraica, SAC2. Departamen-to de Matemáticas, Universidad Nacional de Colombia, Bogotá, 2014. 4
[17] H. Matsumura, Commutative Ring Theory. Cambridge: Cambridge University Press, 1989. 7
[18] J.A. Navarro, Álgebra conmutativa básica. Extremadura: Universidad de Extremadura, 1996. 4
[19] B. Olberding and J. Shapiro, “Prime ideals in ultraproducts of commutative rings”, J. Algebra, vol. 285, pp. 768-794, 2005. 2, 7
[20] I. Rubio y L. Acosta, “On spectral compact-ness of Von Neumann regular rings”, Rev. Colombiana Mat., vol. 46, pp. 81-95, 2012. 5
[21] J.B. Sancho, Apuntes para una licenciatura. Salamanca: Universidad de Salamanca, 2014. 4