Estimación del cardinal del espectro maximal de un producto infinito de cuerpos

Contenido principal del artículo

Autores

Claudia Granados Pinzón http://orcid.org/0000-0003-0614-3187
Wilson Olaya León http://orcid.org/0000-0002-5881-1039
Sofía Pinzón Durán http://orcid.org/0000-0003-2770-3227

Resumen

En este artículo presentamos propiedades generales de un producto de anillos conmutativos con unidad. Caracterizamos el espectro primo y maximal de una suma de anillos y probamos que el espectro de un
producto de cuerpos es T1, o equivalentemente, que es Hausdorff. Por último, estimamos el cardinal del
espectro maximal de un producto de cuerpos.

Palabras clave:

Detalles del artículo

Referencias

[1] P. Abellanas, Geometría Básica. Madrid: Editorial Romo S. L., 1969. 2

[2] F. Anderson and K. Fuller, Rings and Categories of Modules, Second Edition. New York: Springer-Verlag, 1992. 2, 3, 7

[3] M. Arapovic, “Characterizations of the 0-dimensional rings”, Glasnik Matematicki,vol. 18, no. 38, pp. 39-46, 1983. 7

[4] M.F. Atiyah y I.G. Macdonald, Introducción al álgebra conmutativa. Barcelona: Editorial Reverté S. A., 1980. 4, 7

[5] N. Bourbaki, Commutative Algebra, Cap 1-7. Berlin Heidelberg: Springer-Verlag, 1989. 7

[6] P. Clark, Commutative Algebra. Giorgia: University of Giorgia, 2015. 2

[7] D. Eisenbud, Commutative Algebra, with a view toward Algebraic Geometry. New York: Springer-Verlag, 1995. 7

[8] J. Elizondo, Anillos, ideales y espectro pri-mo. México: Universidad Nacional Autóno-ma de México. Disponible en: http://www.math.unam.mx/javier/caps1-2-3. pdf 4

[9] R. Gilmer and W. Heinzer, “Products of commutative rings and zero-dimensionality”, Trans. Amer. Math. Soc., vol. 331, pp. 663-680, 1992. 2, 7

[10] C. Granados-Pinzón, “Álgebras finitas sobre un cuerpo. La recta proyectiva”, Tesis doctoral, Dep. análisis mat., álgebra, geometría y topología, Universidad de Valladolid, Valladolid, 2015. 2

[11] C. Granados-Pinzón y W. Olaya-León, “K−álgebras finitas conmutativas con unidad”, Ingeniería y Ciencia, vol. 12, no. 24, pp. 31-49, 2016. 2

[12]E. Hartmann, Planar Circle Geometries: an introduction to Moebius-, Laguerre- and Minkowski-planes, Darmstadt University of Technology, 2004. 2

[13] H. Havlicek and K. List, “A three-Dimen-sional Laguerre geometry and its visualiza-t ion”, In proceedinhs-Dresden Symposium geometry: constructive and kinematic. Institut für geometrie TU Dresden, Dresden pp. 122-129, 2003. 2

[14] T. Jech, Set theory, The third millenium edi-tions, revised and expanded, Springer Verlag, 2003. 9

[15] R. Levy, P. Loustaunau and J. Shapiro, “The prime spectrum of an infinite product of copies of Z”, Fund. Math., vol. 138, pp. 115-164, 1991. 2, 7

[16] O. Lezama, Cuadernos de Álgebra, No. 10: Geometría algebraica, SAC2. Departamen-to de Matemáticas, Universidad Nacional de Colombia, Bogotá, 2014. 4

[17] H. Matsumura, Commutative Ring Theory. Cambridge: Cambridge University Press, 1989. 7

[18] J.A. Navarro, Álgebra conmutativa básica. Extremadura: Universidad de Extremadura, 1996. 4

[19] B. Olberding and J. Shapiro, “Prime ideals in ultraproducts of commutative rings”, J. Algebra, vol. 285, pp. 768-794, 2005. 2, 7

[20] I. Rubio y L. Acosta, “On spectral compact-ness of Von Neumann regular rings”, Rev. Colombiana Mat., vol. 46, pp. 81-95, 2012. 5

[21] J.B. Sancho, Apuntes para una licenciatura. Salamanca: Universidad de Salamanca, 2014. 4

Descargas

La descarga de datos todavía no está disponible.