Skip to main navigation menu Skip to main content Skip to site footer

Kinetic Comparison Of Lignin Removal From Sugarcane (Saccharum Officinarum) And Cactus (Opuntia Ficus-Indica) Bagasse By Using Laccase Enzyme

Abstract

The present study focused to evaluate the effect of a laccase from Aspergillus sp. in order to expose cellulose contained in both sugarcane (Saccharum officinarum, BCA) and Opuntia-ficus cactus (BOF) bagasses.  The kinetic parameters of the enzymatic activity were calculated for each of the materials, using the initial rates method at various bagasse:solution ratios (10 g:L to 50 g:L) and a total reaction time of 1 h. The assays presented a non-enzymatic removal of extractables by the buffer effect, under the evaluated reaction conditions. On the other hand, there was no dissolution of cellulose or hemicellulose, but there was lignin. Therefore, the results were analyzed, considering the Michaelis-Menten equation and using the disappearance rate of the glignin:L ratio as a basis. Through a Lineweaver-Burk linearization, the best fit of the values was obtained, where Vmax =  14.9566 glignina:L and Km = 40.2011 glignina:L/h for BCA assays (R = 0.9933) and Vmax = 26.8300 glignina:L and Km = 43.5575 glignina:L/h for BOF assays (R = 0.9972). Based on the above, although laccase presented a similar enzymatic affinity for both bagasses, a better catalytic efficiency is predicted towards lignin removal from BOF (0.6160).

Keywords

bagazo de caña, bagazo de cactáceas, lignina, celulosa, lacasa, cinética enzimática

PDF (Español)

Author Biography

Nubia Rosa Cardona López

Universidad Pedagógica y Tecnológica de Colombia, Procesos Ambientalmente Amigables, Avenida Central del Norte 39-115, Tunja, Colombia.

James Alberto Marín

Universidad de Antioquia, Grupo Procesos Químicos Industriales, Calle 67 # 53-108, Medellín, Antioquia.

Óscar Julio Medina Vargas

Universidad Pedagógica y Tecnológica de Colombia, Grupo de Investigación en Química y Tecnología de Alimentos, Avenida Central del Norte 39-115, Tunja, Colombia.

Luis Alberto Ríos

Universidad de Antioquia, Grupo Procesos Químicos Industriales, Calle 67 # 53-108, Medellín, Antioquia.

Gerardo Andrés Caicedo Pineda

Universidad Pedagógica y Tecnológica de Colombia, Procesos Ambientalmente Amigables, Avenida Central del Norte 39-115, Tunja, Colombia.


References

[1] L. H. C. Mattoso, K. B. R. Teodoro, J. M. Marconcini, T. J. Bondancia, A. C. Corrêa, and E. de M. Teixeira, “Sugarcane bagasse whiskers: Extraction and characterizations,” Ind. Crops Prod., vol. 33, no. 1, p. 63–66, 2010.

[2] K. Cury R, R. Olivero V, L. Chams Ch, Y. Aguas M, and A. Martinez M, “Residuos agroindustriales su impacto, manejo y aprovechamiento,” Rev. Colomb. Cienc. Anim. - RECIA, vol. 9, no. S, p. 122, 2017.

[3] D. M. Escalante H, Orduz J, Zapata J, Cardona M, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” Bucaramanga, pp, 150, 2011.

[4] C. Sáenz, E. Sepúlveda, and B. Matsuhiro, “Opuntia sp. mucilage’s: A functional component with industrial perspectives,” J. Arid Environ., vol. 57, no. 3, p. 275–290, 2004.

[5] R. E. Olivero Verbe, Y. del R. Aguas Mendoza, I. D. Mercado Martínez, D. P. Casas Camargo, and L. E. Montes Gazabón, “Utilización de Tuna (opuntia ficus-indica) como coagulante natural en la clarificación de aguas crudas,” Av. Investig. en Ing., vol. 11, no. 1, p. 70, 2014.

[6] B. Mendoza, E. Gómez, E. Hernández, A. Rodríguez, and N. Chavarría, “Elaboración y caracterización de películas biodegradables a partir de mucilago de nopal-caseinato de sodio y mucilago de nopal-pectina,” Ciencias Agroquímicas, Handb., p. 129–136, 2014.

[7] H. Vieyra, U. Figueroa-López, A. Guevara-Morales, B. Vergara-Porras, E. San Martín-Martínez, and M. Á. Aguilar-Mendez, “Optimized Monitoring of Production of Cellulose Nanowhiskers from Opuntia ficus-indica (Nopal Cactus),” Int. J. Polym. Sci., vol. 2015, p. 1–8, 2015.

[8] H. C. Arca, L. I. Mosquera-Giraldo, V. Bi, D. Xu, L. S. Taylor, and K. J. Edgar, “Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters,” Biomacromolecules, vol. 19, no. 7, p. 2351–2376, 2018.

[9] J. Shokri and K. Adibki, “Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries,” Cellul. - Medical, Pharm. Electron. Appl., p, 47-66, 2013.

[10] M. Patchan et al., “Synthesis and properties of regenerated cellulose-based hydrogels with high strength and transparency for potential use as an ocular bandage,” Mater. Sci. Eng. C, vol. 33, no. 5, p. 3069–3076, 2013.

[11] S. H. Ye, J. Watanabe, Y. Iwasaki, and K. Ishihara, “Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer,” Biomaterials, vol. 24, no. 23, p. 4143–4152, 2003.

[12] A. L. Buyanov, A. K. Khripunov, A. A. Tkachenko, E. E. Ushakova, and I. V. Gofman, “High-strength biocompatible hydrogels based on poly(acrylamide) and cellulose: Synthesis, mechanical properties and perspectives for use as artificial cartilage,” Polym. Sci. Ser. A, vol. 55, no. 5, p. 302–312, 2013.

[13] M. Iguchi;, S. Yamanaka;, and A. Budhiono;, “Bacterial cellulose - a masterpiece of nature’s arts,” J. Mater. Sci., vol. 35, no. 2, p. 261–270, 2000.

[14] Ş. Ciumpiliac et al., “Modelling of sorbic acid diffusion through bacterial cellulose-based antimicrobial films,” Chem. Pap., vol. 66, no. 2, p. 144–151, 2011.

[15] M. A. Hubbe, D. J. Gardner, and W. Shen, “Wettability of cellulosics,” BioResources, vol. 10, no. 4, p. 8657–8749, 2015.

[16] B. B. Hallac and A. J. Ragauskas, “Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol,” Biofuels, Bioprod. Bioref. vol, 5: pp, 215–225, 2011

[17] S. G. Karp, A. L. Woiciechowski, V. T. Soccol, and C. R. Soccol, “Pretreatment strategies for delignification of sugarcane bagasse: A Review,” Brazilian Arch. Biol. Technol., vol. 56, no. 4, p. 679–689, 2013.

[18] R. Acosta, J. Sanabria, and D. Nabarlatz, “Biomass from colombian agroindustrial activities: Characterization and potential for oligosaccharides production,” Chem. Eng. Trans., vol. 65, p. 667–672, 2018.

[19] D. Watkins, M. Nuruddin, M. Hosur, A. Tcherbi-Narteh, and S. Jeelani, “Extraction and characterization of lignin from different biomass resources,” J. Mater. Res. Technol., vol. 4, no. 1, p. 26–32, 2015.

[20] H. Rabemanolontsoa and S. Saka, “Various pretreatments of lignocellulosics,” Bioresour. Technol., vol. 199, p. 83–91, 2016.

[21] P. Penjumras, R. B. A. Rahman, R. A. Talib, and K. Abdan, “Extraction and Characterization of Cellulose from Durian Rind,” Agric. Agric. Sci. Procedia, vol. 2, p. 237–243, 2014.

[22] Dominic WS Wong, "Structure and action mechanism of ligninolytic enzymes", Appl BiochemBiotechnol, vol. 157 (2), pp, 174-209, 2009..

[23] U. Moilanen, M. Kellock, S. Galkin, and L. Viikari, “The laccase-catalyzed modification of lignin for enzymatic hydrolysis,” Enzyme Microb. Technol., vol. 49, no. 6–7, p. 492–498, 2011.

[24] L. P. Christopher, B. Yao, and Y. Ji, “Lignin biodegradation with laccase-mediator systems,” Front. Energy Res., vol. 2, no. MAR, p. 1–13, 2014.

[25] M. L. Carvalho et al., “Kinetic study of the enzymatic hydrolysis of sugarcane bagasse,” Brazilian J. Chem. Eng., vol. 30, no. 3, p. 437–447, 2013.

[26] Piñeros-Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias., Researchgate, vol no 2014. pp 335. 2016.

[27] E. S. Abdel-Halim, “Chemical modification of cellulose extracted from sugarcane bagasse: Preparation of hydroxyethyl cellulose,” Arab. J. Chem., vol. 7, no. 3, p. 362–371, 2014.

[28] G. Vanitjinda, T. Nimchua, and P. Sukyai, “Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse,” Int. J. Biol. Macromol., vol. 122, p. 503–516, 2019.

[29] M. Buchanan, “Solvent extractives of wood and pulp (Proposed revision of T 204 cm-97),” Nanofibers - Prod. Prop. Funct. Appl., p. 6, 2012.

[30] L. H. C. Mattoso, K. B. R. Teodoro, J. M. Marconcini, T. J. Bondancia, A. C. Corrêa, and E. de M. Teixeira, “Sugarcane bagasse whiskers: Extraction and characterizations,” Ind. Crops Prod., vol. 33, no. 1, p. 63–66, 2010.

[31] B. R. A. Alencar, E. D. Dutra, E. V. de S. B. Sampaio, R. S. C. Menezes, and M. A. Morais, “Enzymatic hydrolysis of cactus pear varieties with high solids loading for bioethanol production,” Bioresour. Technol., vol. 250, p. 273–280, 2018.

[32] M. E. Malainine, A. Dufresne, D. Dupeyre, M. Mahrouz, R. Vuong, and M. R. Vignon, “Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation,” Carbohydr. Polym., vol. 51, no. 1, p. 77–83, 2003.

[33] Isael Fuentes Herrera “Extracción de celulosa a partir de Opuntia ficus para la evaluación sobre la retención de flúor (F-),”, Mexico, Universidad Autonoma Del Estado de Mexico, Mex p 72, 2018.

[34] L. López, A. Sarmiento, J. Fajardo, L. Valarezo, and R. Zuluaga Gallego, “Determinación del porcentaje de humedad, solubles e insolubles en agua de la fibra de Carludovica Palmata (paja toquilla),” Ingenius, vol. 9, no. 9, 2013.

[35] A. K. Chandel, S. S. da Silva, W. Carvalho, and O. V. Singh, “Sugarcane bagasse and leaves: Foreseeable biomass of biofuel and bio-products,” J. Chem. Technol. Biotechnol., vol. 87, no. 1, p. 11–20, 2012.

[36] F. Masarin et al., “Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content,” Biotechnol. Biofuels, vol. 4, no. 1, p. 55, 2011.

[37] Myrna Alicia Abraján Villaseñor, Efecto en el metodo de extraccion de las caracteristicas quimicas y fisicas del mucilago den nopal (Opuntia ficus-indica) y estudio de su aplicación como recubrimiento comestible,España, Universidad politecnica de valencia,Valencia, Es p. 233, 2008.

[38] Evelyn Ester Jiménez Fernández, “"Obtención del mucílago de la cáscara de la tuna (Opuntia Ficus- Indica) a partir de diferentes métodos de extracción”. Chile, Universidad de Chile, Santiago, Chl p. 63, 2014.

[39] L. Mesa, E. González, C. Cara, M. González, E. Castro, and S. I. Mussatto, “The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse,” Chem. Eng. J., vol. 168, no. 3, p. 1157–1162, 2011.

[40] V. K. Ponnusamy et al., “A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential,” Bioresour. Technol., vol. 271, p. 462–472, 2019.

[41] X. P. Ouyang, Y. Yang, G. D. Zhu, and X. Q. Qiu, “Radical synthesis of tetrameric lignin model compound,” Chinese Chem. Lett., vol. 26, no. 8, p. 980–982, 2015.

[42] J. Huang, Y. Liu, B. Sun, J. Li, R. Zhang, and S. Nie, “Laccase pretreatment for enhancing microwave-assisted alkaline extraction of hemicellulose from bagasse,” BioResources, vol. 14, no. 1, p. 931–942, 2019.

[43] C. Chen, L. Jiang, G. Ma, D. Jin, L. Zhao, and X. Ouyang, “Lignin Removal from Tobacco Stem with Laccase Improved by Synergistic Action of Weak Alkali and Tween 80,” Waste and Biomass Valorization, vol. 10, no. 11, p. 3343–3350, 2019.

[44] Q. Wang, S. Liu, G. Yang, and J. Chen, “Modeling laccase-induced lignin removal in prehydrolysis liquor from kraft-based dissolving pulp production,” Bioresour. Technol., vol. 175, p. 638–641, 2015.

[45] J. Zhang, H. Zhou, D. Liu, and X. Zhao, Pretreatment of lignocellulosic biomass for efficient enzymatic saccharification of cellulose. p. 17-65, 2019

[46] R. M. R. G. Almeida and M. R. Ladisch," Enzyme interactions on lignocellulosic biomass structure". p. 33-59, 2020.

[47] N. V. Bhagavan and C.-E. Ha, “Enzymes and Enzyme Regulation,” Essentials Med. Biochem., p. 47–58, 2011.

[48] K. A. Johnson and R. S. Goody, “The original Michaelis constant: Translation of the 1913 Michaelis-Menten Paper,” Biochemistry, vol. 50, no. 39, p. 8264–8269, 2011.

[49] Y. S. Cho and H. S. Lim, “Comparison of various estimation methods for the parameters of Michaelis–Menten equation based on in vitro elimination kinetic simulation data,” Transl. Clin. Pharmacol., vol. 26, no. 1, p. 39–47, 2018.

[50] M. Marasović, T. Marasović, and M. Miloš, “Robust Nonlinear Regression in Enzyme Kinetic Parameters Estimation,” J. Chem., vol. 2017, p. 12, 2017.

[51] A. Ramezani Kakroodi, S. Panthapulakkal, M. Sain, and A. Asiri, “Cellulose nanofibers from the skin of beavertail cactus, Opuntia basilaris, as reinforcements for polyvinyl alcohol,” J. Appl. Polym. Sci., vol. 132, no. 36, p. 1–7, 2015.

[52] S. Bensadón, D. Hervert-Hernández, S. G. Sáyago-Ayerdi, and I. Goñi, “By-Products of Opuntia ficus-indica as a Source of Antioxidant Dietary Fiber,” Plant Foods Hum. Nutr., vol. 65, no. 3, p. 210–216, 2010.

[53] M. Cheikh Rouhou, S. Abdelmoumen, S. Thomas, H. Attia, and D. Ghorbel, “Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies,” Int. J. Biol. Macromol., vol. 116, p. 901–910, 2018.

[54] Raquel Gabriela Córdoba Bolaños Germán Ricardo Cultid Chamorro., Estudio comparativo de la actividad enzimática de Lacasa (Lac), lignina peroxidasa (LiP) y Manganeso peroxidasa (MnP) de “pleurotus ostreatus” cultivado en residuos lignocelulosicos de raquis de palma de aceite, bagazo de fique y pulpa de café, Nariño, Universidad de Nariño (Udenar), Pasto, Col, 2015.

[55] Z. Zhu, N. Sathitsuksanoh, T. Vinzant, D. J. Schell, J. D. McMillan, and Y. H. P. Zhang, “Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility,” Biotechnol. Bioeng., vol. 103, no. 4, p. 715–724, 2009.

Downloads

Download data is not yet available.