Summability approximation theorems of triple random variables
Abstract
The purpose of this article is to extend Chow, Teicher, Savas and Patterson results to higher dimension. To obtain this we consider multidimensional totally monotonic and independent identically random variables. Using these concepts we show a series of approximation type theorems.
Keywords
Random variables, Summability, Pringsheim limit.
References
- Bisher, M., and Hatip, A. (2021). Neutrosophic Random variables. Neutrosophic Sets and Systems 39: 45-52. Doi: 10.5281/zenodo.4444987
- Borel, E. (1909). Les Probabilities denombra- bles et leurs applications arithmetiques. Rendiconti del Circolo Matematico di Palermo (1884- 1940) 27 (2):247-271. DOI: https://doi.org/10.1007/BF03019651
- Chow, Y. S., and H. Teicher. (1971). Almost certain summability of independent, identically distributed random variables. The An- nals of Mathematical Statistics 42 (1):401-404. Doi:10.1214/aoms/1177693533 DOI: https://doi.org/10.1214/aoms/1177693533
- Granados, C., and Sanabria, J. (2021). On inde- pendence neutrosophic random variables. Neu- trosophic Sets and Systems 47: 541-557. Doi: 10.5281/zenodo.5775184
- Granados, C. (2021). New notions on neutro- sophic random variables. Neutrosophic Sets and Systems 47: 286-297. Doi: 10.5281/zeno- do.5775135
- Patterson, R. F. (1999). Double sequence core theorems. International Journal of Mathema- tics and Mathematical Sciences 22 (4):785-793. Doi:10.1155/S0161171299227858 DOI: https://doi.org/10.1155/S0161171299227858
- Pringsheim, A. (1900). Zur theorie der zweifach unendlichen zahlen folgen. Mathematische Annalen 53 (3):289-321. Doi:10.1007/BF01448977 DOI: https://doi.org/10.1007/BF01448977
- Savas, R., and Patterson, R. (2021). Sum- mability approximation theorems of dou- ble random variables, Communications in Statistics - Theory and Methods, Doi: 10.1080/03610926.2021.1901920 DOI: https://doi.org/10.1080/03610926.2021.1901920
Downloads
Download data is not yet available.