Skip to main navigation menu Skip to main content Skip to site footer

IoT-supported automated system for water quality monitoring in aquaponic systems

Abstract

The national program for science, technology and innovation in agricultural sciences proposes the implementation of efficient and sustainable innovation systems alternatives to traditional fish farming practices. In aquaponics, it has not been possible to implement automated water quality control monitoring systems, due to the high costs and the misinformation that is created around new technologies, such as the Internet of Things (IoT). Thus, this work had the purpose of implementing a prototype supported by IoT and energized by photovoltaic energy for the monitoring of dissolved oxygen (DO), temperature (T), pH, electrical conductivity (EC) and salinity in the commissioning of a medium-scale aquaponic system in the municipality of Lengupa-Boyacá. The hardware architecture was carried out using an Arduino card, an electronic board based on the Atmega2560 microprocessor and a power source was supported by a photovoltaic solar panel. The results show that it is possible to implement prototypes supported by the IoT and powered by photovoltaics for the monitoring of DO, T, pH, EC and salinity in aquaponic systems. The collection and visualization of data in real time could contribute to timely decision making.

Keywords

IoT, automatización, acuaponía, calidad de agua

PDF (Español)

References

  1. FAO “El futuro de la alimentación y la agricultura Tendencias y desafíos”, 2017.
  2. J. Sung “The Fourth Industrial Revolution and Precision Agriculture” En Automation in
  3. Agriculture Securing Food Supplies for Future Generations, S. Hussmann,
  4. IntechOpen, 2018, pp. 4-15.
  5. V. Jahnavi & S. Ahamed “Smart Wireless Sensor Network for Automated
  6. Greenhouse”, IETE Journal of Research, vol. 61, pp. 180-185, Jun, 2015, DOI:
  7. 1080/03772063.2014.999834.
  8. N. Yahya “Agricultural 4,0: Its implementation toward future sustainability”, en Green
  9. Urea, N. Yahaya , Green Energy Technol, 2018, pp. 125-145.
  10. J. Ighalo, A. Adeniyi, G. Marques “Internet of Things for Water Quality Monitoring and
  11. Assessment: A Comprehensive Review, In: Artificial Intelligence for Sustainable
  12. Development: Theory, Practice and Future Applications, Studies in Computational
  13. Intelligence, A. Hassanien, R. Bhatnagar, A. Darwish, Switzerland, Springer, 2021, pp.
  14. -260.
  15. W. Sambo, B. Yenke, A. Förster, P. Dayang “Optimized Clustering Algorithms for
  16. Large Wireless Sensor Networks: A Review” Sensors, vol. 19, pp. 19:322, Nov, 2019,
  17. DOI: 10.3390/s19020322.
  18. E. Quiroga, S. Jaramillo, W. Campo, G. Chanchí “Propuesta de una Arquitectura para
  19. Agricultura de Precisión Soportada en IoT” RISTI, vol, 24, pp. 39-56, 2017.
  20. C. Sobin “A Survey on Architecture, Protocols and Challenges in IoT”, Wireless Pers
  21. Commun, vol, 112, pp. 1383–1429, Jun, 2020, DOI: 10,1007/s11277-020-07108-5.
  22. B. Yep, & y. Zheng “Aquaponic trends and challenges – A review”, J. Clean. Prod, vol,
  23. , pp. 1586-1599, Ago, 2019, DOI: 10,1016/j,jclepro,2019,04,290
  24. Haryanto, M. Ulum, A. Ibadillah, R. Alfita, K. Aji, R. Rizkyandi “Smart aquaponic
  25. system based Internet of Things (IoT), J. Phys.: Conf. Ser, vol. 1211, pp. 012047,
  26. Nov, 2019, DOI: 10,1088/1742-6596/1211/1/012047
  27. H. Yavuzcan, L. Robaina, J. Pirhonen, E. Mente, D. Domínguez, G. Parisi “Fish
  28. Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on
  29. Feed and Faeces—A Review”, Water, vol, 9, pp. 1-17, Dic, 2016,
  30. DOI:10,3390/w9010013
  31. J. Colt, J. Tomasso “Hatchery water supply and treatment” In Fish Hatchery
  32. Management, G. Wedemeyer, American Fisheries Society: Bethesda, USA, 2002, pp.
  33. -55.
  34. D. Ramirez, D.Sabogal P. Jimenez, H. Giraldo “La acuaponía: una alternativa
  35. orientada al desarrollo sostenible”, Revista Facultad de Ciencias Básicas, vol. 4, pp. 32-51, 2017. DOI: doi.org/10.18359/rfcb.2230
  36. H. Palm, M. Nievel, U. Knaus “Significant factors affecting the economic sustainability
  37. of closed aquaponic systems, Part III: plant units”, AACL Bioflux, vol. 8, pp. 1760-
  38. , Feb, 2015,
  39. O. Ortiz, P. Rituay, N. Murga, M. De Oliveira, A. Bruno “Monitoreo remoto
  40. automatizado de calidad del agua en sistemas acuapónicos en São Paulo, Brasil”,
  41. RISTI, vol, 31, pp. 223-235, Jul, 2020.
  42. Arduino Company “Arduino Mega 2560 Rev3” , [Online]. (2023, Jun 10) Disponible en
  43. https://store.arduino.cc/products/arduino- mega-2560-rev3.
  44. Dfrobot “DFRobot WIKI”, [Online]. (2023, jun 23 ) Disponible en https://wiki.dfrobot.com/
  45. Brightsolarpower “solar_panels”, [Online]. (2023, Jun 29) Disponible en
  46. https://brightsolarpower.co.za/product-category/solar-power-kit/.
  47. Electronica I+D, “Sensores” [Online]. (2023, May 22 ) Disponible en
  48. https://didacticaselectronicas.com/
  49. Electronicshub, “ESP32 vs ESP8266 – Which One To Choose” [Online]. (2023, Feb 17 )
  50. Available: https://www.electronicshub.org/esp32-vs-esp8266/
  51. Rikasensor, “sensor manufacturer & solution” [Online]. (2023, Jun 29 ) Available:
  52. https://www.rikasensor.com/
  53. N. Pandit & M. Nakamura “Effect of High Temperature on Survival, Growth and Feed
  54. Conversion Ratio of Nile Tilapia, Oreochromis niloticus”, Our Nature, vol, 8: pp. 219-224,
  55. Ago, 2010. DOI: 09.10.2010. http://dx.doi.org.
  56. J. Ndau and P. Vilhelm “Capacity for thermal adaptation in Nile tilapia (Oreochromis
  57. niloticus): Effects on oxygen uptake and ventilation”, J. Therm. Biol, vol, 105, pp. 103206
  58. Abr, 2022. DOI: 10.1016/j.jtherbio.2022.103206.
  59. D. DeWaIle, B. Swistock, W. Sharpe “Episodic flow-duration analysis: a method of
  60. assessing toxic exposure of brook trout Salvelinus fon tinalis) to episodic increases in
  61. aluminum” Can. J. Fish. Aquat. Sci, vol, 52, pp. 816-827, Dic, 1994.
  62. Y. Mallya “The Effects Of Dissolved Oxygen on Fish Growth in Aquaculture” Final Project
  63. Kingolwira National Fish Farming Centre, Fisheries Division Ministry of Natural Resources
  64. and Tourism, Tanzania, 2007.
  65. M. Alselek, J. Alcaraz-Calero, J. Segura-Garcia, Q. Wang “Water IoT Monitoring System for
  66. Aquaponics Health and Fishery Applications” Sensors, vol, 22, pp. 1-20, Oct, 2022. DOI:
  67. 3390/s22197679
  68. M. Kumar, R. Kumari, M. Rashmitha R. Sinha, B. Sujatha, K. Suma “Smart Water
  69. Monitoring System for Real-time water quality and usage monitoring”, ICIRCA, pp. 617-
  70. , Juli, 2018. DOI: 10.1109/ICIRCA.2018.8597179.
  71. D. Wangl, J. Zhao, L. Huang, D. Xu “Design of A Smart Monitoring and Control System for
  72. Aquaponics Based on OpenWrt” ICIMM, pp. 937-942, Jul, 2015. DOI: 10.2991/icimm-
  73. 2015.171.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.