Skip to main navigation menu Skip to main content Skip to site footer

FEASIBILITY FOR ENERGY RECOVERY FROM BIOGAS AT LOS CORAZONES LANDFILL, VALLEDUPAR: FACTIBILIDAD PARA EL APROVECHAMIENTO ENERGETICO DEL BIOGÁS DEL RELLENO SANITARIO LOS CORAZONES, VALLEDUPAR

Abstract

This study evaluated the feasibility of energy recovery from biogas generated at the Los Corazones landfill in Valledupar to mitigate methane emissions and diversify the regional energy matrix. The LandGEM model was used to estimate methane generation, considering a generation rate (k) of 0.05 year-1 and a generation potential (L0) of 170 m3/Mg of waste, calculated based on population projections and solid waste disposal with a per capita rate of 0.28 tons/person/year. Results indicate that by 2035, the year of maximum potential, 27,095,297 m3 of methane will be generated, equivalent to 2,598,179 MJ/day of chemical energy, 324,798 kWh/day of electrical energy, and 360,887 kWh/day of thermal energy, sufficient to supply more than 62,000 households daily. These values highlight the landfill as a significant renewable source, capable of reducing methane emissions, a gas with a global warming potential 28 times greater than carbon dioxide. Comparisons with international studies confirm that biogas utilization in landfills located in warm and humid climates can reduce methane emissions by up to 60% while generating clean energy. This analysis underscores the importance of implementing capture and utilization technologies in Colombian landfills, promoting environmental and energy sustainability. Finally, it is concluded that the Los Corazones landfill has the potential to become a sustainable management model, integrating greenhouse gas emission reduction with renewable energy generation.

Keywords

Biogas, Methane, Renewable Energy, Landfill, Greenhouse Gases


References

  1. D. D. Otero Meza, A. Sagastume Gutiérrez, J. J. Cabello Eras, J. Salcedo Mendoza, and J. Hernández Ruydíaz, “Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities,” Energy Convers. Manag., vol. 293, p. 117522, Oct. 2023, doi: 10.1016/j.enconman.2023.117522.
  2. L. F. Ramírez Ríos, D. Becerra Moreno, and J. Y. Ortega Contreras, “Potential use of methane gas from the Villavicencio sanitary landfill, Colombia,” Ing. Compet., vol. 26, no. 2, Jul. 2024, doi: 10.25100/iyc.v26i2.14019.
  3. C. L. Y. Wong and W. Zawadzki, “Emissions rate measurement with flow modelling to optimize landfill gas collection from horizontal collectors,” Waste Manag., vol. 157, pp. 199–209, Feb. 2023, doi: 10.1016/j.wasman.2022.12.018.
  4. Y. Wei et al., “Evaluation of greenhouse gas emission and reduction potential of high-food-waste-content municipal solid waste landfills: A case study of a landfill in the east of China,” Waste Manag., vol. 189, pp. 290–299, Dec. 2024, doi: 10.1016/j.wasman.2024.08.029.
  5. A. E. Ersoy and A. Ugurlu, “Bioenergy’s role in achieving a low-carbon electricity future: A case of Türkiye,” Appl. Energy, vol. 372, p. 123799, Oct. 2024, doi: 10.1016/j.apenergy.2024.123799.
  6. A. Folino, E. Gentili, D. Komilis, and P. S. Calabrò, “Biogas recovery from a state-of-the-art Italian landfill,” J. Environ. Manage., vol. 367, p. 122040, Sep. 2024, doi: 10.1016/j.jenvman.2024.122040.
  7. X.-X. Niu, S.-Z. Wang, Y.-C. Niu, L.-F. Wei, and L.-Y. Yu, “Improvement and optimization for the first order decay model parameters at typical municipal solid waste landfills in China,” Adv. Clim. Change Res., vol. 14, no. 4, pp. 605–614, Aug. 2023, doi: 10.1016/j.accre.2023.07.002.
  8. M. R. Dihan, T. Naha, and K. Kirtania, “Comparative assessment of waste-to-energy scenarios to mitigate GHG emission from MSW in a developing mega city,” Energy Sustain. Dev., vol. 82, p. 101540, Oct. 2024, doi: 10.1016/j.esd.2024.101540.
  9. A. Rafey and F. Z. Siddiqui, “Modelling and simulation of landfill methane model,” Clean. Energy Syst., vol. 5, p. 100076, Aug. 2023, doi: 10.1016/j.cles.2023.100076.
  10. S. M. Rafew and I. M. Rafizul, “Application of system dynamics for municipal solid waste to electric energy generation potential of Khulna city in Bangladesh,” Energy Rep., vol. 9, pp. 4085–4110, Dec. 2023, doi: 10.1016/j.egyr.2023.02.087.
  11. CORPOCESAR, “Resolución No. 0008.” CORPORACIÓN AUTÓNOMA REGIONAL DEL CESAR, Jan. 14, 2022.
  12. Superintendencia de Servicios Públicos Domiciliarios, “Informe Nacional de Disposición Final de Residuos Sólidos 2021,” Informe Nacional de Disposición Final de Residuos Sólidos 2021, Bogotá D.C., 14, Feb. 2023.
  13. Amy Alexander, C. Burklin, and A. Singleton, Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. Washington, DC: U.S. Environmental Protection Agency, 2005.
  14. D. Wang et al., “Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models,” Heliyon, vol. 9, no. 12, p. e22943, Dec. 2023, doi: 10.1016/j.heliyon.2023.e22943.
  15. C. Macias, E. J. Guadamud Soledispa, V. A. Lino Calle, and D. D. Carvajal Rivadeneira, “PLANIFICACIÓN OPERATIVA EN REDES DE AGUA POTABLE PARA LA CIUDAD DE JIPIJAPA,” Rev. ALCANCE, vol. 7, no. 1, Mar. 2024, doi: 10.47230/ra.v7i1.61.
  16. A. R. Rodrigues Silveira, W. C. Nadaleti, G. Przybyla, and P. Belli Filho, “Potential use of methane and syngas from residues generated in rice industries of Pelotas, Rio Grande do Sul: Thermal and electrical energy,” Renew. Energy, vol. 134, pp. 1003–1016, Apr. 2019, doi: 10.1016/j.renene.2018.11.063.
  17. U.S. Environmental Protection Agency and Combined Heat and Power Partnership, “Catalog of CHP Technologies.” U.S. Environmental Protection Agency Combined Heat and Power Partnership, Sep. 2017.
  18. Instituto de Hidrología, Meteorología y Estudios Ambientales, “Consulta y Descarga de Datos Hidrometeorológicos.” Accessed: Apr. 25, 2024. [Online]. Available: http://dhime.ideam.gov.co/atencionciudadano/
  19. U.S. Environmental Protection Agency, Background Information Document for Updating AP42 Section 2.4 for Estimating Emissions from Municipal Solid Waste Landfills. Washington, DC: U.S. Environmental Protection Agency, 2008.
  20. “DANE - Censo general 2005.” Accessed: Apr. 25, 2024. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-general-2005-1
  21. “DANE - Censo Nacional de Población y Vivienda 2018.” Accessed: Apr. 25, 2024. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
  22. Superintendencia de Servicios Públicos Domiciliarios, “Informe Nacional de Disposición Final de Residuos Sólidos 2020.” Superintendencia de Servicios Públicos Domiciliarios, Dec. 2021.
  23. N. F. Da Silva et al., “First order models to estimate methane generation in landfill: A case study in south Brazil,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 104053, Aug. 2020, doi: 10.1016/j.jece.2020.104053.
  24. M. Anshassi, T. Smallwood, and T. G. Townsend, “Life cycle GHG emissions of MSW landfilling versus Incineration: Expected outcomes based on US landfill gas collection regulations,” Waste Manag., vol. 142, pp. 44–54, Apr. 2022, doi: 10.1016/j.wasman.2022.01.040.
  25. D. Wang et al., “Simulating CH4 emissions from MSW landfills in China from 2003 to 2042 using IPCC and LandGEM models,” Heliyon, vol. 9, no. 12, p. e22943, Dec. 2023, doi: 10.1016/j.heliyon.2023.e22943.
  26. K. Wangyao, “Methane Generation Rate Constant in Tropical Landfill,” 2010.
  27. Á. A. Andrade Morales, Á. H. Restrepo Victoria, and J. E. Tibaquirá, “Estimación de biogás de relleno sanitario, caso de estudio: Colombia,” Entre Cienc. E Ing., vol. 12, no. 23, pp. 40–47, Mar. 2018, doi: 10.31908/19098367.3701.
  28. S. M. Rafew and I. M. Rafizul, “Application of system dynamics for municipal solid waste to electric energy generation potential of Khulna city in Bangladesh,” Energy Rep., vol. 9, pp. 4085–4110, Dec. 2023, doi: 10.1016/j.egyr.2023.02.087.
  29. S. Chandra and R. Ganguly, “Assessment of landfill gases by LandGEM and energy recovery potential from municipal solid waste of Kanpur city, India,” Heliyon, vol. 9, no. 4, p. e15187, Apr. 2023, doi: 10.1016/j.heliyon.2023.e15187.
  30. P. Ghosh et al., “Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India,” Bioresour. Technol., vol. 272, pp. 611–615, Jan. 2019, doi: 10.1016/j.biortech.2018.10.069.
  31. L. F. Ramírez Ríos, D. Becerra Moreno, and J. Y. Ortega Contreras, “Potential use of methane gas from the Villavicencio sanitary landfill, Colombia,” Ing. Compet., vol. 26, no. 2, Jul. 2024, doi: 10.25100/iyc.v26i2.14019.
  32. Unidad de Planeación Minero Energética, “Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética,” Unidad de Planeación Minero Energética, Bogotá D.C., Apr. 2019.
  33. E. Y. Paddy, B. V. Namondo, A. Fopah-Lele, J. Foba-Tendo, F. S. Ibrahim, and E. Tanyi, “Assessment of the energy potential of municipal solid waste: A case study of Mussaka dumpsite, Buea Cameroon,” Bioresour. Technol. Rep., vol. 25, p. 101784, Feb. 2024, doi: 10.1016/j.biteb.2024.101784.
  34. “Ley No. 2169.” Congreso de Colombia, Dec. 22, 2021.

Downloads

Download data is not yet available.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.