Skip to main navigation menu Skip to main content Skip to site footer

Stochastic Simulation to Determine the Present Net Value and Uncertainty Costin a Wind Power Plant

Abstract

This document presents a proposal for stochastic simulation to determine the investment uncertainties and the uncertainty cost of operation for a wind power plant. Taking as a study object a hypothetical wind plant in Cabo de la Vela, in La Guajira, Colombia, with the same characteristics as the current  Jepirachi plant of EPM, where the probability density function of the net present value of the project is found, and the probability of project profitability. Additionally, the uncertainty cost for the operation of the plant is determined depending on the different monthly scenarios of the primary energy (wind speed). This cost approximates a quadratic function that serves as a cost element in the problem of economic dispatch considering renewables. Finally, the results obtained and future developments are discussed

Keywords

Monte Carlo Simulations, Stochastic Process, Uncertainty Modeling, Wind Energy.

PDF (Español)

References

  1. J. Hetzer, D. Yu and K. Bhattarai, An economic
  2. dispatch model incorporating wind power, IEEE
  3. Transactions on Energy Conversion, 23(2), 603- DOI: https://doi.org/10.1109/TEC.2008.918809
  4. (2008)
  5. J. Zhao, F. Wen, Z. Dong, Y. Xue and K. Wong,
  6. Optimal dispatch of electric vehicles and wind
  7. power using enhanced particle swarm optimization,
  8. IEEE Transactions on Industrial Informatics,
  9. (4), 889-899 (2012)
  10. S. Surender, P. Bijwe and A. Abhyankar Realtime
  11. economic dispatch considering renewable
  12. power generation variability and uncertainty
  13. over scheduling period, IEEE Systems Journal,
  14. (4), 1440-1451 (2015)
  15. J. Arévalo, F. Santos and S. Rivera, Uncertainty
  16. Cost Functions for Solar Photovoltaic Generation,
  17. Wind Energy Generation, and Plug-In Electric
  18. Vehicles: Mathematical Expected Value and
  19. Verification by Monte Carlo Simulation, International
  20. Journal of Power and Energy Conversion,
  21. in print.
  22. Comisión de Regulación de Energía y Gas, Resolución
  23. de 2015, por la cual se modifica la
  24. metodología para determinar la energía firme
  25. de plantas eólicas, 8 de mayo de 2015.
  26. Unidad de Planeación Minero Energética, Registro
  27. de Proyectos de Generación, Octubre de
  28. Irina Khindanova, A Monte Carlo Model of a
  29. Wind Power Generation Investment, Journal of
  30. Applied Business and Economics vol. 15, 2013.
  31. Roy Yates, David Goodman, Probability and
  32. Stochastic Processes: A Friendly Introduction
  33. for Electrical and Computer Engineers, Wiley,
  34. M. Celeska, K. Najdenkoski, V. Stoilkov, A.
  35. Buchkovska, Z. Kokolanski and V. Dimchev,
  36. Estimation of Weibull parameters from wind
  37. measurement data by comparison of statistical
  38. methods, IEEE EUROCON 2015 - International
  39. Conference on Computer as a Tool (EUROCON),
  40. Salamanca, 2015, pp. 1-6.
  41. R. Wang, W. Li and B. Bagen, Development
  42. of Wind Speed Forecasting Model Based on the
  43. Weibull Probability Distribution, 2011 International
  44. Conference on Computer Distributed Control
  45. and Intelligent Environmental Monitoring,
  46. Changsha, 2011, pp. 2062-2065. DOI: https://doi.org/10.1055/s-0030-1259989
  47. WindPower Program Wind Statistics
  48. and the Weibull Distribution, disponible
  49. en: http://www.wind-powerprogram.
  50. com/wind_statistics.htm 2013.
  51. Unidad de Planeación Minero Energética, Atlas
  52. de Vientos y Energía Eólica, 2016.
  53. Alvaro Pinilla, Luis Rodríguez, Rodrigo Trujillo,
  54. Performance Evaluation of Jepirachi Wind
  55. Park, Renewable Energy, 2008

Downloads

Download data is not yet available.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.